Trimble 3300 Topo Software User Guide

Trimble

3

Part no.: 571 703 051

nble.

Contents

1 Introduction	Dear Customer The System Philosophy Important Notes	1-2 1-3 1-4
2 Trimble 3300 -	Instrument Description	
The Routine Total	Hardware Overview	2-2
Stations	The Routine Total Stations Trimble 3300	2-3
	Overview about "Topo"	2-4
	Overview about "Construction"	2-5
	Operation	
	Software "Topo"	2-6
	The Keyboard	2-8
	The Basic Concept of the Menu	2-9
	Use of this Manual	2-10
	Safety Notes	
	Risks in Use	2-11
	Attention	2-13
	From Power to Data	
	Overview	2-14
3 First Steps	Before Measurement	
	Set-Up and Coarse Centring	3-2
	Levelling and Fine Centring	3-2
	Telescope Focusing	3-3
	Switching the Instrument on	3-4
	Principles	
	Principles of Display	3-5
	Principles of Input	3-6
	Input of Reflector, Trunnion Axis and	
	Station Heights	3-7
	Heightstationing Input of th and ih/Zs	3-8
	Measurement "Stationing in Elevation"	3-9
	Input of Point Number and Code	3-10
	Principles of Distance Measurements	3-11
	Distance tracking	3-11
	Measurements to inaccessible Points	3-12

Contents

4 Coordinates

Presettings

Introduction	3-13
Settings in the Set-Up Menu	3-14
Frequently used Settings	3-17
Instructions for Settings	3-18
Saving the Measured Values	3-23
Measurement in the Start-Up Menu	
Selecting the Measuring Mode	3-24
Measurement	3-26
The Menu Guidance	
Principle	4-2
Station Point Memory Trimble 3300	4-4
Special Features of Trimble 3306	4-4
Unknown Station	
Stationing in Elevation	4-6
Measurement "Unknown Station"	4-8
Recording	4-10
Known Station	
Measurement "Known Station"	4-11
Orientation using a known Azimuth	4-12
Orientation using known Coordinates	4-13
Recording	4-14
Stationing in Elevation	
Measurement "Stationing in Elevation"	4-15
Recording	4-17
Polar Points	
Confirmation of Stationing	4-18
Measurement "Polar Points"	4-20
Eccentric Measurement	4-21
Recording	4-22
Setting Out	
Confirmation of Stationing	4-23
Measurement "Setting Out"	4-25
Setting Out using known nominal	
Coordinates	4-25
Setting Out using known Setting Out	
Parameters	4-26
Measurement Results	4-27
Recording	4-28

Applications

The Menu Guidance	
Principle	5-2
Connecting Distance	
Measurement "Connecting Distance"	5-5
Polygonal Connecting Distance	5-7
Radial Connecting Distance	5-8
Recording	5-9
Object Height	
Measurement "Object Height"	5-10
Definition of a Reference Height ZSet	5-11
Measurement beside the Plumb Line	5-12
Recording	5-13
Station + Offset	
Measurement "Station + Offset"	5-14
The Station equals Point A	5-18
The Station equals Point B	5-19
The Station equals Point P	5-19
Shifting the Coordinate Axes y,x	5-20
Recording	5-22
Vertical Plane	
Measurement "Vertical Plane"	5-23
hSet - Determination of the	
Height Coordinate	5-24
xSet - Definition of the x-Axis	5-25
ySet - Points before or behind the Plane	5-26
The Station equals Point P	5-27
Recording	5-27
Area Calculation	
Measurement "Area Calculation"	5-28
Recording	5-31

6	Data	Managemen	t
		<u> </u>	

Editor

Lattor	
Calling the EDIT Menu	6-2
Display of Data Lines	6-2
Searching for Data Lines	6-3
Deleting Data Lines	6-4
Entering Data Lines	6-6
Data Transfer	
Preparing the Instrument for data transfer	6-9
PC Terminal Settings	. 6-10
Data Transmission	. 6-11
Data Reception	. 6-12
Data Formats	
Introduction	. 6-13
Description of M5 data format	. 6-14
Description of Rec 500 data format	. 6-18
Description of R4 and R5 (M5, Rec 500)	
format of Trimble 3300	. 6-20
Defination of type identification	. 6-26
Type identifier-CZ Formats M5, R4, R5	
and Rec500 Trimble 3300	. 6-26
Description of value blocks	. 6-29
CZ Format ID and address block	. 6-30
Data output on a printer	. 6-31
User Interface	
Introduction	. 6-32
What is an interface?	. 6-32
Hardware interface	. 6-33
Remote Control	
Introduction	. 6-34
Xon/Xoff Control	. 6-34
Rec 500 Software Dialog (Rec 500 Protocol)	. 6-34
Key Codes and Function Requests	. 6-36
Recording Data Lines	
Recording Data Lines	6-41
Update	
Introduction	. 6-46
Preparation on the PC	. 6-48
Starting Update	. 6-50

Contents

7 Adjusting and checking	Introduction 7-	-2
	V Index / Hz Collimation 7-	-5
	Compensator 7-	6
8 Annex	Overview Softkeys 8-	.2
	Overview Key Functions 8-	.6
	Geodetic Glossary 8-	.7
	Technical Data	
	Trimble 3304 3306 and 3305 8-1	З
	Electromagnetic Compatibility 8-1	6
	Battery Charger I G 20 8-1	7
	Charging the Battery	8
	Formulae and Constants	Ũ
	Computational Formulae for	
	Angle Measurements 8-1	9
	Computational Formulae for	
	Distance Measurements	9
	Reduction Formulae	0
	Verifying on Calibration Distances	2
	Prism and Addition Constants	23
	Error Messages	
	What to do	24
	Before you call the service	6
	Maintenance and Care	
	Instructions for Maintenance and Care	27
	Case/Extended Temperature Range	
	Keeping the Measurement System	
	in the Case 8-2	8
	Using the Instrument in the Low Temperature	
	Range to -35°C 8-2	8

Contents

Dear Customer	1-2
The System Philosophy	1-3
Important Notes	1-4

Dear Customer

By purchasing an Trimble 3300 Routine Total Station from Trimble you have opted for a leading-edge product in the field of surveying instruments. We congratulate you on your choice and would like to thank you for the trust placed in our company. For quite some time, surveying has no longer been limited to the measurement of bearings and distances. Complex measurement systems have been in demand that do not only satisfy ever increasing needs for automatization, but also those involving digital data processing as well as the effectiveness of daily measuring practice. New standards have thus been set regarding technology and operating convenience.

The Trimble 3300 Routine Total Station is part of a complete range of surveying instruments from Trimble. Data interchange between all the instruments is ensured by a common data format.

The operating convenience offered by the Trimble 3300 hardware is very high within this group of total stations. The clear graphic display and only 7 keys give the user a wide variety of information for the processing in the field and provide him with valuable aids for achieving high productivity in solving his surveying tasks.

The software version "Topo¹" meets high standards with the special programs for this application.

¹ topography

Attention !

Please read the safety notes in chapter 2 carefully before starting up the instrument.

The instrument was manufactured by tested methods and using environmentally compatible quality materials.

The mechanical, optical and electronic functions of the instrument were carefully checked prior to delivery. Should any defects attributable to faulty material or workmanship occur within the warranty period, they will be repaired as a warranty service.

This warranty does not cover defects caused by operator errors, inexpert handling or inappropriate application.

Any further liabilities, for example for indirect damages, cannot be accepted.

User manual:	Edition
Cat. No.:	571 703 051
Date:	February 2001
Software release:	> V 5.50

Subject to alterations by the manufacturer for the purposes of further technical development.

Phone: +49-6142-21000 Telefax: +49-6142-2100-220

E-mail:

Support@spectraprecision.de

Homepage:

http://www.trimble.com

🕿 Tip

The type label and serial number are provided on the left-hand side and under-side of the instrument, respectively. Please note these data and the following information in your user manual. Always indicate this reference in any inquiries addressed to our dealer, agency or service department:

Instrument:

	Trimble 330	3
	Trimble 330	5
	Trimble 330	6
Serial nu	Imber:	Software version:
	A	

We would like to wish you every success in completing your work with your Trimble 3300. If you need any help, we will be glad to be of assistance.

Yours

ZSP Geodetic Systems GmbH Carl-Zeiss-Promenade 10 D-07745 Jena

Phone: (03641) 64-3200 Telefax: (03641) 64-3229 E-Mail: surveying@zspjena.de http://www.trimble.com

This chapter gives you an overview of the operation and controls of the instrument as well as the programs which are a special feature of the Trimble 3300 Routine Total Stations.

Instrument Description	2-2
Operation	2-4
Safety Notes	2-9
From Power to Data	2-14

Trimble 3300

Hardware Overview

- Sighting collimator
- Mark for trunnion axis height
- Telescope focusing control
- Vertical tangent screw
- Eyepiece

1

2

3

4

5

6

7

8

9

10

11

12

- Vertical clamp
 - Display (graphic capabilities 128 x 32 pixels)
 - Horizontal tangent screw
- Keyboard
- Horizontal clamp
- Interface
- Tribrach screw
- 13 Telescope objective with integrated sun shield
- 14 Battery cassette lock
- 15 Vertical axis level
- 16 Battery
- 17 Circular level
- 18 Adjustment screws for optical plummet
- 19 Optical plummet
- 20 Tribrach clamping screw

Fig. 1-2: Trimble 3300, Objective side

Fig. 1-3: Trimble 3300, Optical plummet

The Routine Total Stations Trimble 3303 / 3305 and Trimble 3306

	The electronic Routine Total Stations as instruments of mean accuracy are not only appropriate for land-measuring by geodesists, but also users on building sites appreciate their uncomplicated handling as well as rapidity, reliability and clearness in measuring. Measurements are made easy thanks to menu guidance supported by graphics, instrument software with flexible point identification and universal data record formats.
	The principal features:
Distance measurement	by phase comparison method
Measuring range	Trimble 3303 up to 1500 m with 1 prism, Trimble 3305 / 3306 up to 1300 m with 1 prism
Angle measurement	Hz and V electronically all common units and angle reference systems
Error compensation	Automatic compensation of sighting axis and index errors
The advantages in operating	Display screen with graphic capabilities (128 x 32 pixels), user-friendly surface, easy familiarisation, simple handling, reliable control of all measuring and computing processes with clear references, integrated, practical application programs, ergonomic arrangement of controls, light, compact construction
Quick charging, longer times of measuring	Eco-friendly power supply for about 1000 angle and distance measurements, charging time 1 hour
Data management	RS 232 C (V 24) interface as data input and output
	In the internal data memory of Trimble 3303 and Trimble 3305, 1900 data lines can be saved.

This program is available on the delivered instrument.

Overview about software version "Topo"

(version > 5.00)

This program version can be selected.

Overwiev about software version "Construction"

(version > 4.00)

Overview about software "Topo"

Trimble 3300

Overview about software "Topo"

The Keyboard

Two types of keys:

- Hardkeys
 direct function
 ON and (MEAS)
 - Key in connection with ON (SHIFT)
- Softkey function depending on program, significance explained in display line at the bottom

ON

(MEAS)

(ON)

ON)

OFF

*

ON EDIT

ON PNO

ON TRK

For operating the Trimble 3300, only 7 keys are needed.

Functions (Hardkeys)

Switching the instrument on and changing over to hardkey function

- Starting a measurement
- Switching the instrument off
- Illumination ON/OFF
- Calling up the memory
- Calling up the input of point number and code
- Going to the main menu
 - Starting the tracking function

Softkeys

Overview softkeys	Function keys defined by the display in dependence
Annex	on the program.

(ON) MENU

The Basic Concept of the Menu

The total station is able to realise a great variety of functions.

Functions needed directly during the measuring process are accessible through the key functions.

The menu facilitates the access to many other functions.

Having selected the menu, you can go to submenus and you are offered available functions, respectively:

e.g. settings

1	Angl	le G	0.000	59rd
↓ 2	Dist	tance	e 0.	001m
3	V–Re	efer	zeni	th≮u
ESC	<u>ተ</u>	+		MOD

e.g. measurement programs

Use of this Manual

The manual is divided into 8 main chapters.

The subchapters have not been numbered. Clarity and convenience are provided by a maximum of 3 structural levels, for example:

1	Coordinates		
2	Coordinates	Unknown Station	

Recording

The pages are divided into two columns:

Principal text including

- Description of measuring processes and methods
 - instrument operation and keys
 - -Trimble 3300 display / graphics
 - drawings and large graphics
 - tips, warnings and technical information

👁 Tip

for hints, special aspects and tricks

Attention !

for risks or potential problems

Technical Information

for technical background information

Measuring tasks are defined as follows:

given: : given values

- meas.: : measured values
- requ.: : required/computed values

You will find a list of terms in the annex (Geodetic Glossary).

Chapter	
Section	

<u>Subsection</u>

Functional text for

calling up programs:

4 Coordinates

- 3 Stationing in elevation
- Mode

Softkeys and their functions

Cross references to other chapters

Small graphics

Risks in Use

Instruments and original accessories from Carl Zeiss have to be used only for the intended purpose. Read the manual carefully before the first use and keep it with the instrument so that it will be ready to hand at any time. Be sure to comply with the safety notes.

Attention !

• Don't make any changes or repairs on the instrument and accessories. This is allowed only to the manufacturer or to specialist staff authorised by the same.

- Only the service team or authorised specialist staff are allowed to open the instrument and accessories.
- Do not point the telescope directly at the sun.
- Do not use the instrument and accessories in rooms with danger of explosion.
- Use the instrument only within the operative ranges and conditions defined in the chapter of technical data.

• Do not operate the battery charger in humid or wet conditions (risk of electrical shock). Make sure the voltage setting is identical on the battery charger and voltage source. Do not use instruments while they are wet.

Attention !

• Take the necessary precautions at your measuring site in the field, note the relevant traffic rules.

• Check that the instrument has been correctly set up and the accessories are properly secured.

• Limit the time of working when it is raining, cover the instrument with the protective hood during breaks.

• After taking the instrument out of the case, fix it immediately to the tripod with the retaining screw. Do never leave it unfastened on the tripod plate. After loosening the retaining screw again, put the instrument immediately back into the case.

• Prior to starting operation, allow sufficient time for the instrument to adjust to the ambient temperature.

• Tread the tripod legs sufficiently down in the ground in order to keep the instrument in stable position and to avoid its turning over in case of wind pressure.

• Check your instrument at regular intervals in order to avoid faulty measurements, especially after it has been subjected to shock or heavy punishment.

• Remove the battery in case of being discharged or for a longer stop period of the instrument. Recharge the batteries with the LG 20.

• Properly dispose of the batteries and equipment taking into account the applicable national regulations.

Attention

Attention !

•The mains cable and plugs of accessories have to be in perfect condition.

• When working with the tachymeter rod near to electrical installations (for example electric railways, aerial lines, transmitting stations and others), there is acute danger to life, independent of the rod material. Inform in these cases the relevant and authorised security offices and follow their instructions. Keep sufficient distance to the electrical installations.

• Avoid surveying during thunderstorms because of lightning danger.

Trimble 3300

From Power to Data

PC Station

The first steps cover up the set-up of the instrument, including the explanation of basic inputs and the necessary presettings. After having set the parameters for saving and entered the point information, you can measure in the start-up menu.

Before Measurement	3-2
Principles	3-5
Presettings	3-13
Measuring in the Start-up Menu	3-24

Set-Up and Coarse Centring

In order to guarantee the stability of measurement we recommend the use of a havy Tripod.

Set-up:

Extend the tripod legs (1) to a comfortable height of observation and fix them using the tripod locking screws (2). Screw the instrument centrally to the tripod head plate (3). The tribrach screws (4) should be in mid-position.

Coarse Centring:

Set up the tripod roughly above the station point (ground mark), the tripod head plate (3) should be approximately horizontal.

Centre the circular mark of the optical plummet (5) above the ground mark using the tribrach screws. To focus the circle: Turn the evepiece.

To focus the ground mark: Draw out or push in the eyepiece of the optical plummet.

Levelling and Fine Centring

Coarse Levelling:

Level the circular bubble (6) by adjusting the length of the tripod legs (1).

Precision Levelling:

Align the control unit parallel with the imaginary connecting line between two tribrach screws. Level the instrument by turning the tribrach screws a) and b) in opposite directions. Turn the instrument by 100 grad in Hz and level instrument with tribrach screw c).For checking, turn the instrument round the vertical axis. After that, check the residual inclination by turning the instrument in both diametral positions of (1) and (2). Take the mean of deviation from center point of level and adjust, if necessary.

Precision Centring:

Shift the tribrach on the tripod head plate until the image of the ground mark is in the centre of the circular mark of the optical plummet; repeat the levelling various times if necessary.

Telescope Focusing

Focusing the Crosslines:

Sight a bright, evenly coloured surface and turn the telescope eyepiece until the line pattern is sharply defined.

Attention !

Sighting of the sun or strong light sources must by all means be avoided. This may cause irreparable damage to your eyes.

Focusing the target point:

Turn the telescope focusing control until the target point is sharply defined.

👁 Tip

Check the telescope parallax: If you move your head slightly whilst looking through the eyepiece, there must be no relative movement between the crosslines and the target; otherwise, refocus the crosslines as above.

Switching the Instrument on

ON	Press key	Additionally to the company logo, the number of the software version (important for future updates) and the values last set for: - addition constant - scale - temperature - air pressure are displayed briefly.
		☞ Tip
		The compensator is automatically activated when the instrument is switched on.
Switch	ing the instrument	If levelling of the instrument is insufficient, the digits after the decimal point in the displayed angle readings are replaced by dashes.

off by pressing the keys

ON + *OFF*

simultaneously.

First Steps

Principles

Principles of Display

The information

- point *c*ode,
- *p*oint number and

- measured / computed values

is displayed on two pages.

Toggling between the pages:

to page 1

→2

to page 2

Display page 2:

Display page 1:

👁 Tip

The fields at the bottom of the display are related to the functions of the keys situated below the display.

They indicate the next possible settings - do not mix it up with the current setting.

Principles of Input	
	Additionally to the setting of predefinitions - as described further down in this chapter - you will have to enter data continually during the measuring process.
	These entries are
	 the constantly changing instrument, station and reflector heights and
	 coordinates of stations or other known backsight points.
Data Management	The manual input of coordinates is described in Chapter <i>6 Data Management</i> .

🛄 Data Transfer	If available, it is useful to transfer the values directly
Data Management	from a PC instead of entering them manually.

First Steps

Input of Reflector, Trunnion Axis and Station Heights

The input of the values of reflector height (th), instrument height (ih) and station height (Zs) (height-stationing) allows you to measure with absolute heights already in the initial menu. If these values have not been entered, only relative height differences will appear in the display (memory). If Zs=0 the height difference "h" is displayed and recorded, otherwise the height "Z".

in measuring

Presettings

First Steps

only

modes HD and yxh

th/ih

on display page 1 only:

- ESC to quit
 Z heightstationing
 th to enter the reflector height
 ih/Zs to enter the instrument and station height
- th 0.000m □---ih 1.585m th ;ih Zs 500.000m ŏz ozs ESC Z th ih/Zs o.k.

o.k. to confirm

3-7

First Steps

Principles

Input of the reflector height:

Heightstationing: Input of th and ih/Zs

L	th 0.000 m to confirm the old reflector height (in this case 0)	th 0.000m input
	to enter a value	
←	and to go to the desired position in the display	th+00000.000 m \leftarrow +- \rightarrow 0.k.Presentation of the current position for input in negative type.
- o.k.	to browse through digits to confirm	

Input of the instrument height / station height

	Internal	memory
ESC		input
Principles

Measurement "Stationing in Elevation"

Result and Recording

Input of Point Number and Code

(C+P)

signalises the possibility to enter point number and code.

- and
- to go to the desired digit of point number and code
- + and
- to browse through the existing character set

The entered values will be used in the next measurement.

- C 5-digit point code, alphanumeric notation
- P 12-digit point number with the special characters #, -, . , .numeric notation

🕿 Tip

The toggling between point number and code is realised continuously.

For fast browsing, keep the respective key depressed.

After the measurement, the point number is incremented by one unit, the code remains invariable until being modified by the user.

In the application and coordinate programs, the code is provided with non-varying characters (A,B,..). In this case, it is not possible to enter the code.

Principles of Distance Measurements

Single measurement

MEAS

The intensity of the receiving signal can be assessed with the bar graph. The more to the right the stars are presented, the better is the returning signal.

The distance measurement can be cancelled with the softkey ESC.

 Presettings
 The slope distances and derived values are corrected with regard to the influences of earth curvature / refraction. Additionally, a correction of atmospheric influences (temperature and pressure) is applied.

 The correction is zero with L
 20°C and

The correction is zero with T = 20° C and P = 944 hPa.

Distance tracking (continuous measurement of the distance)

ON (TRK)

END to finish the measurement

yxh to change the measurement mode

The measuring mode can also be changed during the tracking measurement. For recording data during the tracking measurement use key (MEAS).

Measurements to inaccessible Points

🕿 Tip

Please use this function in the start-up menu only.

In the program "Polar Points" it is possible to measure with "Eccentric Measurement".

The prism used for the distance measurement cannot be stationed on the desired point P.

Sight towards the point P and trigger the measurement. Then, sight the prism stationed on the auxiliary point H.

Pay attention to the condition of equidistance S-P = S-H.

If data recording is activated, <u>only</u> a data line indicating the angle to P and the distance to H is saved.

Naturally, the angle and distance to H are displayed after the measurement, being the angle value continuously updated in the Trimble 3300 display.

Introduction

The required presettings are to be subdivided into three groups:

Settings in the Start-up Menu

- Specify measuring units for angle and distance Short-time setting of V angle in percent
- Activating and deactivating the compensator
- Orientation of Hz circle

Frequently used Settings

- Input of pressure and temperature
- Input of scale and addition constant

Rarely used Set Instructions

- Display mode for angle and distance
- Vertical reference system
- System of coordinates
- Display of coordinates
- Measuring units of temperature, pressure
- Switching the instrument automatically off
- Switching the acoustic signal on and off
- Regulation of display contrast and brightness of crossline illumination
- Switching the distance measurement off automatically if sighting line interruption

Settings in the Set-Up Menu

<u>Setting the measuring</u> <u>units of distance</u>		The settings of units for angle and distances are in menu instrument settings. Distances settings can be made in the measurement menu.		
F1 m ft	to set with the distance meters feet	Display page 2 MEM/3 C ABBA9 (C+P) P 1234567890-1 f t DMS +Hz CHCK +1 F1 F2 F3 F4 F5		

Display page 1

V%	
Vej	to toggle quickly between angle in percent / defined measuring unit

Presettings

Activat	Activating and						
<u>deactiv</u>	deactivating the						
compe	<u>nsator</u>						
Display	page 2:						
СНСК	to go to the menu						
c/i	and						
Comp							
	Adjusting and						
	checking						
C-on	to deactivate the						
	compensator						
	function						
C-off	to activate the						
	compensator						
	function						

If recording is activated, an information line will be saved indicating compensator function on or off.

Attention !

If the compensator is out of its working range and the function is activated, the digits after the decimal point in the angle readings are replaced by dashes. In this case, the instrument is not sufficiently levelled and a remote release from a PC is not admitted.

Presettings

Orientation of Hz circle

Aim: Hz = 0

Hz=0

Sight target

MEAS

Aim: Hz = xxx, xxx

HOLD

Turn the instrument to the desired Hz circle value

MEAS

Sight target

MEAS

332. 1360 grd |Hz=0| Hz ÷ 1. d + ۲ - $\rightarrow +$ MEAS SC

Display page 2

Aim: Change counting direction

→Hz Measurement clockwise

←Hz Measurement anticlockwise

Attention !

The set counting direction is only valid in the start-up menu.

After the connection and in all programs, the Hz counting direction is always set clockwise.

Presettings

Frequently used Settings

ON [MENU	<mark>1 Add</mark> ↓ 2 Sca
1 Inp ↑	and	3 Tem
↓ o.k.	to go to the desired menu point to confirm	↑ 3 Tem 4 Pre ESC ↑
+	and	addco prism
-	to alter the addition constant (scale, temperature and pressure) step by step	 Tip For the first star
o.k.	to confirm	pressure are en If a prism with -35 mm should this setting sho (For calculating
	🚇 Formulae and	Range of values

constants Annex Alteration of pressure, temperature, scale and addition constant

	1	Addco	Θ	. 000	Π
Φ_{-}	2	Scale	1.00	0000	
	3	Temp.		20	°C
П	SC	一 个	Φ		YES

	2	Scale	e1.0	00000	
1	3	Temp.		204	°C –
	4	Pres.		992k	ъPа
E	SC	个	4		YES

for the first starting, only temperature and pressure are entered.

If a prism with another prism constant than -35 mm should be used permanently, also this setting should be realised immediately. (For calculating the constant see annex.)

ae and	Range of values					
	-30 °C	< Temp.	< 70 °C	with Δ 1 °C		
	-0,127mm ·	< Addco	< 0,127mm	with Δ 1 mm		
	0,995000 ·	< Scale	< 1,005000	with Δ 1 ppm		
	440hPa ·	< Press.	< 1460 hPa	with Δ 4 hPa		

Rarely used Set Instructions

ON (MENU)

4 Setting the instrument

- YES
 - to go to
 - ↑ and
 - to select the menu point
- MOD to change setting
- ESC to quit menus
- and
- to quit setting / confirm change

Angle and distance display

	1	Ans	le	Θ.	000	59rd
\downarrow	2	Dis	tan	ice	0.	001m
	3	V-F	lefe	r z	eni	th⊮⊔
ESC		<u>ተ</u>	4			MOD

Possibilities:

Angle	
grad	0,005-0,001-0,0005 (Trimble 3305/3306)
grad	0,005-0,001-0,0002 (Trimble 3303)
DMS	10" - 5" - 1"
deg	0,005 ⁰ - 0,001 ⁰ - 0,0005 ⁰
mil	

Distance

m 0,01-0,005-0,001 ft 0,02-0,01-0,001

Attention !

The defined presentations of angle and distance are related to the display. Saving is realised with the highest possible precision.

Presettings

Vertical reference system

🖙 Tip

in the set-up menu!

The setting of the measuring unit % is done

Val Vertical angle 90° 300^{grads} 180° 0 270°

zenithku

Υ

SPL.

2: Vertical angle unit 360°

Presettings

System of coordinates / display of coordinates

	-4	Coo	rd. S	5yst	Y + Y
+	5	Coo	rd.D)ispl	. Y7X
	6	Tem	pera	ature	e •C
	SC	ተ	4		MOD

Assignment of coordinates:

Indication sequence: Y-X / X-Y E-N / N-E

Attention !

When the assignment of coordinates is changed, the question for further use of the internal station coordinates appears in the display, calling the user's attention to a possible source of errors.

Measuring units for pressure / temperature

Possibilities:

Temperature	°C °F	degrees centigrade degrees Fahrenheit
Pressure	hPa Torr inHg	hectopascal (or millibar)

MOD

 \mathbf{v}

to change setting

to quit menus

↑ and

to quit setting / confirm change

Presettings

Switching the instrument off / acoustic signal

个	8	Turr	ר Off	OFF
	9	Sour	hd	ON
+	10	Cont	trast	. 11 11 11 11 11 11 11 11 11 11 11 11 11
E	SC	一个	+	MOD

Possibilities:

Switching off
Acoustic signal

10 min - 30 min - OFF ON- OFF

൙ Tip

Before the instrument will be switched off automatically, a warning appears indicating that the instrument will be switched off within one minute. This process can be interrupted by pressing any key.

Displaycontrast /Reticle illumination

🕗 Tip

The adjustment of the contrast is only possible with the display illumination switched off. The adjustment of the Reticle illumination is only possible with the display illumination switched on.

MOD to change settings ESC

to quit the menu

and

to guit settings / to confirm alterations

Presettings

Time out of Distance meter during interrupted EDM

൙ Tip

This setting controls the time out of the distance meter during the EDM interruption.

Settings of units for angles and distances

Ϋ́	11	EDM	T-Ou	lt.	AUS
	12	Angl	e,		9r d
$ \Psi $	13	Dist	tance	!	Π
E	SC	一个	$-\Psi$		MOD

Possibilities:

Angles	Grad DMS deg mil	400.0000 360° 00' 00" 360.0000° 6400mils
Distances	m ft	Meters Feet

🖙 Tip

It is possible to change the units between meters or feet in the start up menu.

NИ	n	n
IV I	S	•

- to change settings
- ESC to quit the menu
- ↑ and
- to quit settings / to confirm alterations

Presettings

Saving the Measured Values

ON + MENU

5 Setting Interface

- YES to go to the menu
- MOD to toggle between MEM/1, MEM/2, MEM/3 V24/1, V24/2, V24/3 OFF
- ESC to return to the higher-order menu

MEM/x - internal saving (only Trimble 3303 and Trimble 3305)

V24/x - external saving through RS232 interface

- Off no saving
- 1 saving of measured values
- 2 saving of computed values
- 3 1 and 2

Attention !

These settings are valid in the programs "Coordinates" and "Applications".

All values in the Start-up menu are interpreted as measured values (1).

🕿 Tip

The detailed depiction concerning the question of which values are saved with which type identifiers and with which recording selection you can find in the chapter Data Management.

Presettings First Steps	Attention !
	In connection with the selection of saving, the selection of the measuring mode is decisive for:
	Which results are to be displayed? Which values are to be saved?

Selecting the Measuring Mode (presentation of the results at the display)

F1	to set the following measuring modes	Display pag	ge 1:			
		Tip In the dis selectable	play of soft e measuring	:key 1, alw g mode ap	ays the ne opears.	xt
		SD: Display	of the real	measurec	l values	
Status (display:	⊿ SD → HZ ∠JV HZV (ې .124 .99. ا ت=0	2.715 1505 5850 V2 F	m 9rd (C 9rd	Ĥ ₽
Ľ		F1	F2	F3	F4	F5

Only for alignments and for setting out right angles, not for distance measurements

Display of the calculated values with Z=0

with Z≠0

HD: Display of the reduced distance and the height difference

yxh: Display of the local rectangular coordinates

Measurement in the local system with station y=x=0 with Z=0

with Z≠0

🕗 Tip

The measuring modes can be changed at any time and the results will be displayed immediately in the selected measuring mode, but not, though, another recording. All following measurements are displayed and recorded in the newly selected mode.

In all measuring modes, the angle reading is updated continually.

The distance or coordinates are updated only after the next measurement.

Measurement

After entering and defining all parameters required you can carry out the measurement.

MEAS

etc. Measurement to further points

Input point number and code

(MEAS)

൙ Tip

After the measurement, the flush right point number is incremented by one unit within the number of digits displayed up to the special character (no figure) to the left of it. (According to this picture, counting goes only up to 9, then it will begin again with "0".)

Measurements in the modes

HzV and SD are realised without entering and recording local or global heights

Display with absolute heights, with the heights Zs, ih and th entered

The basic requirement for a measurement in a system of coordinates is a stationing within this system. That means, that the position and height of the instrument are determined by measuring to known backsight points.

In the case of an unknown station, the scale and the orientation of the Hz circle in azimuth direction are computed additionally to the station coordinates. In the case of a known station, only the scale and the orientation of the Hz circle in azimuth direction are computed.

After the stationing, the actual measurements - that means setting out and polar points - are possible within this system of coordinates.

The Menu Guidance	4-2
Unknown Station	4-6
Known Station	4-11
Stationing in Elevation	4-15
Polar Points	4-18
Setting Out	4-23

The guidance through the menu is very easy to understand and based on a unique schema for all programs.

Principle

The Menu Guidance

- B to continue by calling point B
- ESC to return to the higher-order menu
- A to repeat point A if required

If A has been calculated, measured, defined as station, the symbol for A is filled.

Attention !

If errors or confusions should occur whilst measuring to the points, the measurement to single points can be repeated immediately.

- ON)+ PNo to enter point number and code
- (MEAS) to trigger measurement

👁 Tip

Prior to each measurement with MEAS it is possible to enter a point number and a code for the point to be measured.

In the stationing programs, the codes (A, B, S) have been invariably set. Point numbers can be entered.

The point number is incremented automatically by 1.

The code that has been set is saved with every measurement until being modified by the user.

In the setting-out program, the possibility to measure is indicated additionally by the **MEAS** symbol in the display

dl	0.005m	
de	0.000m	
dr	0.005m	MEAS
ESC	Testi a	o.k.

Station Point Memory Trimble 3300

In a non-volatile instrument memory, the following data are retained after switching the instrument off and overwritten with every new determination:

Station coordinates	Y,X,Z
Instrument height	ih
Reflector height	th
Scale	m
Orientation	Om

The coordinates of the station point are calculated or entered by means of the coordination programs.

During the following operations (setting-out / polar points), the user can access this memory at the respective parts of the program and does not have to enter the values again.

After having changed the station, these values have to be calculated or again entered in the course of the program.

Special Features of Trimble 3306

The Trimble 3306 (the instrument is not fitted out with a data memory) has a memory location for another single point (coor-memory) containing the coordinates of this point (Y;X;Z) in a non-volatile form.

This memory location permits a simple transmission of coordinates (stationing with "unknown station") with the Trimble 3306 and spares the user the trouble to take the coordinates down or to enter them twice.

Window of the Trimble 3306 when calling coordinates

Method:

The station coordinates S1 are known or have been calculated by means of a coordinate program. The coordinates of point K1 will be calculated with the program "polar points" and saved in the "coormemory" with **ENET**.

After placing the instrument on S2, the coordinates of the points S1 (last station) and K1 (coor-memory) are called with the stationing program "unknown station" and used for determining the coordinates of S2.

Now, the coordinates of the point K2 can be calculated with the program "polar points" and stored in the "coor-memory". After changing the position of the instrument to S3, the coordinates of this point will be calculated in analogy to station S2.

Unknown Station

Coordinates

Unknown Station

If it is <u>not</u> possible to occupy a point with a <u>known</u> <u>position</u> in order to sight the points to be surveyed or set out, a free stationing can be carried out. If all backsight points have a known height, the Z coordinate can also be determined simultaneously. A maximum of 5 points can be measured!

By measuring to 2..5 known <u>B</u>acksight <u>P</u>oints (A. E), the instrument will calculate the station coordinates X_s, Y_s, Z_s the circle orientation Om and the scale m.

The description is "with stationing in elevation". The procedure without stationing in elevation is almost identical.

Stationing in Elevation

Stati	ioning Lith	Of	elevat.
ESC	ωi 	tho	ut

Input of instrument height

Note !

In a free stationing with height determination, all backsight points must have a height coordinate. It is not possible to use individual backsight points separately according to position and height. The height is calculated by simple averaging.

🕿 Tip !

If not all backsight points are provided with a height coordinate, the method **without height** is to be applied. Subsequently, the station height can be determined separately by measurement to <u>one</u> point using the stationing in elevation program.

Measurement "Unknown Station"

E → + - Sight reflector

The operational steps for BP B....E are now carried out in analogy to BP A.

END to display the residuals

Explanation:

- vy: Residual in Y-direction
- vx: Residual in X-direction
- vz: Residual in Z-direction

👌 Tip !

Consequently, residuals can also be used to "stake out" (seek) points, because the measurement of point can be repeated immediately.

Display of residuals:

Unknown Station

<u> </u> 09	0.0)00m		
VX	0.0)00m		A
VZ	-0.0)10m		◀
More	一个	+	Del	0.k.
-			/	

Point to which the residuals belong/

After confirming the residuals:

Display of the station coordinates:

Explanation:

m:	calculated	scale

- Om: orientation unknown
- s0: standard deviation of the weighting unit (mean point error)

Note !

It is possible to go backwards and re-measure the corresponding points, whereby the intermediary points get lost. But it is more recommendable to complete the measurement (calling the residuals) after three backsight points, delete and re-measure the corresponding direction. New measurements are added at the end. Consequently, the assignment of the point codes (A, B, etc.) are shifted.

Unknown Station

		Scale menu			
-	scale	Mstb.	0.999939		
+	to edit	Korr	. –61ppm		
o.k.	to accept scale, to go to the residuals menu		+ – 0.K.		
		If the scale error mes	e is outside the permissible range, an sage appears.		
		Note	I		
		After the scale has been confirmed, the station coordinates are re-calculated. Then, the residuals can be evaluated once more.			
Recording					
	Presettings First steps	If recording is activated, the following lines are saved in dependence on the settings: Designation of the mode			
		Point numbers and code			
		backsight Y,X,Z SD,Hz,V vy,vx,vz	point A, B, C, D, E Coordinates Readings backsight point residuals		
		Y,X,Z	Coordinates of station point S		
		m,Om	Scale and circle orientation		
		sO	Standard deviation of the weight unit		

Known Station

Coordinates

Known Station

If it is possible to occupy a point with a <u>known position</u> in order to sight the points to be surveyed or set out, a stationing on a known point can be carried out.

By measuring to a known <u>B</u>acksight <u>P</u>oint A, the instrument will calculate the circle orientation Om and the scale m.

Measurement "Known Station"

Known Station

After defining S:

There are two ways to calculate the orientation.

Orientation using a known Azimuth

The orientation using a known azimuth will be selected if the bearing angle between the station and the backsight point is known (for example calculated from coordinates) and a distance measurement to the backsight point is impossible.

- to set the required direction by turning the instrument
- (MEAS) to clamp the set direction
- → to sight the known point
- (MEAS) allocation is completed
- YES to confirm, record, quit the program
- NO to reject, new start

Display of results and recording

orientation, new start

Orientation using known Coordinates

This orientation method will be used if the coordinates of the backsight point are known.

Selecting the coordinates of BP A

Known Station

- new to accept the new scale
- old to transfer the orientation accepting an old scale
- Inpt to transfer the orientation entering any scale
- Rept to repeat the calculation

Display of results and recording

Recording

Presettings First steps	If recording is activated, the following lines are saved in dependence on the settings:		
	Designati	Designation of the mode	
	Point numbers and code		
	Y,X	Coordinates of station point	
	Y,X	Coordinates of backsight point A	
	SD,Hz,V	Readings for backsight point A according to selection	
	m,Om	Scale and circle orientation according to selection	

Coordinates

Stationing in elevation

Stationing in elevation permits the determination of the height above Mean Sea Level independently of planimetric stationing. In programs involving local coordinates, in particular, the absolute height can be included in the measurement.

given.: : Z_P meas.: : (SD,V)_{S-P}, ih, th requ.: : Z_S

The station height is determined by measurement to a **B**acksight **P**oint with a known height.

Measurement "Stationing in Elevation"

Stationing D------in elevation (th in dz dz; ESC Stat CHCK

to quit the program

Stationing in Elevation

Enter one after another:

Z, ih, th:

 <u>th</u> 0.850 m Confirmation of the old value

<u>th=0</u> Set to zero

Example th:			
th	0.850m		
	th=0 input	-	

- → Sight backsight point
- ON + PNo Point number to be changed?

MEAS

- YES to confirm, record, quit the program
- NO to reject, new start

Display of results and recording

Recording

Presettings First steps	If recordi saved in	ing is activated, the following lines are dependence on the settings:	
	Designat	Designation of the mode	
	Point nu	Point numbers and code	
	th	Reflector height at backsight point (only if changed)	
	ih	Instrument height (only if changed)	
	Z	Height of backsight point	
	SD, Hz, \	/ Readings for backsight point	
	Zs	New station height	

Polar Points

Coordinates

Polar Points

Determination of the coordinates and heights of new points by distance and direction measurements.

The coordinates can be computed in a higher-order system of coordinates.

Local coordinates can be determined in the standard measurement menu.

Confirmation of Stationing

- YES to confirm the station coordinates and to continue in the program
- NO to reject, new start stationing

m to change the scale

4-18
Polar Points

Scale:

Coordinates

Reference direction:

- YES to confirm and continue in the program
- NO to reject, new start stationing

Reference dir. o.k. ? Hz 303.82559rd NO YES

Instrument and station heights:

- YES to confirm and continue in the program
- NO to reject, new start height stationing
- ih/Zs to enter instrument and reflector heights

Attention !

If neither a stationing in elevation has been realised beforehand nor Zs is entered now, all heights Z will be related to the station height Zs=0.

If ih is not entered either, all heights Z will be related to the trunnion axis height Zi=0.

Polar points

Measurement "Polar Points"

Display of results and saving

👁 Tip

The measurement can be triggered both on display pages 1 and 2. After the measurement, the program returns to the page where the measurement has been triggered.

Coordinates

Polar points

Eccentric Measurement

If points cannot be measured directly, the eccentric measurement option can provide the solution. Spatial eccentric target measurements are very helpful especially for indoor surveys.

spatial eccentricity

position eccentricities

The graphics does not change !

Type of target eccentricity (softkey MOD):

- Tv: in front of the centre
- Th: behind the centre
- TI: left of the centre
- Tr: right of the centre
- Ts: spatial relative to the centre

Viewing direction: Centre of the instrument !

Note !

Height calculation is based on the assumption that centre and eccentricity have the same level. This does of course not apply to the Ts type (spatial) (calculation of the real height of the centre).

Display before eccentric measurement is started

Note !

The eccentricity set is effective only once.

Polar Points

Recording

Presettings First steps	If recording is activated, the following lines are saved in dependence on the settings:		
	Designation of	Designation of the mode	
	Point numbers	Point numbers and code	
	m	Scale (only if changed)	
	ih	Instrument height (only if changed)	
	Zs	Station height (only if changed)	
	th	Reflector height at backsight point (only if changed)	
	Tv,Th,Tr,Tl,Ts	Eccentricity	
	SD, Hz, V	Polar coordinates	
	Y, X, Z	Rectangular coordinates	

Coordinates

Setting Out

Coordinates

Setting Out

Search for or setting out points in a given system of coordinates. A stationing is the prerequisite for setting out points on the basis of coordinates.

After having entered the coordinates of the point to be set out and measured the approximate point, the Trimble 3300 displays the result in the form of the longitudinal deviation dl, the transverse deviation dq, the angle Hz between the approximate point and the nominal point, the radial deviation dr and the deviations of the coordinates dx, dy and dz.

given.: $(Y,X)_{SP}$ comp.: :(HD,Hz)_{S-P} meas .: : (HD,Hz,V)_{S-N} comp.: : $(dl,dq,dr)_{P-N}$

Confirmation of Stationing

- YES to confirm the station coordinates and to continue in the program
- NO to reject, new start stationing
- 4400000.776m Υs. Xs 5800003.152m .000115 Ш NO П
- m to change the scale

Setting	Out

Scale:

• , • to change m

Coordinates

Reference direction:

- YES to confirm and continue in the program
- NO to reject, new start stationing

Reference dir. o.k. ? Hz 303.82559rd NO YES

Instrument and station heights:

- YES to confirm and continue in the program
- NO to reject, new start height stationing
- ih/Zs to enter instrument and reflector heights

Measurement "Setting Out"

The following options for the setting-out method are available:

Setting Out using known nominal Coordinates

Setting Out

to turn the instrument up to Hz=0th to enter the reflector height ON + PNOPoint number and code to be corrected?

(MEAS) to measure the approximate point

After defining the coordinates:

to continue see measurement results page 4-24

Setting Out using known Setting Out Parameters

Entering HD:

L <u>HD 4.152 m</u> Confirmation of the old value

L <u>HD=0</u> Set to zero

- First steps
- to set the desired Hz value
- (MEAS) 1st measurement to the approximate point

HD	4.152m			
	HD=0	input		

Defining the Hz value:

Coordinates

Setting Out

ON + PNO

Point number and code to be corrected?

th to enter reflector height

Measurement results see below

Measurement Results

- to change over the different displays of results
- Test see below
- o.k. to confirm the setting out and to record; to set out other points

dl dc dr	0.005m 0.000m 0.005m Test →	MEAS 0.k.
dy dy	0.004m _0.003m	
HZ	0 00254rd	MEGS
ESC	Test →	0.k.
dz Hz	0.051m 0.000090n	
		MEAS

Display of results / recording

(MEAS) to repeat until the approximate point is close enough to the set out point!

th

to enter the reflector height

(MEAS) to measure

Additional measurement of the set out point:

Υ	0.000m
X	0.000m
z	0.000m
ESC	5-0 th

Display of results / recording

Coordinates

Setting Out

s-o Setting out, calling up next point

Display of results and recording

Recording

PresettingsIf recording is activated, thFirst stepssaved in dependence on th		ctivated, the following lines are lence on the settings:	
	Designation of the mode		
	Point numbers and code		
	HD,Hz, Z or	Nominal values	
	Y,X,Z		
	SD,Hz,V Readings for the point		
dl, dq, dr		Setting-out differences	
	dy, dx	Setting-out differences (only if nominal coordinates are used)	
	dz	Setting-out differences (only if the height is set out)	
		or	
	th	Reflector height (only if changed)	
	SD,Hz,V Readings and		
	Y,X,Z	Actual coordinates of check measurement	

The chapter *Applications* describes typical configurations and computations for various measuring methods that are frequently used in practice.

The Menu Guidance	5-2
Connecting Distance	5-5
Object Height	5-10
Station + Offset	5-14
Vertical Plane	5-23
Area calculation	5-28

The guidance through the menu is very easy to understand and based on a unique schema for all programs.

Principle

Applications

ESC

Conn. Distances

In the Connecting Distance and Point-to-Line-Distance programs, the height reference can be established by a stationing in elevation (with) or by a measurement to the first point (without). The Object Height and Vertical Plane programs have own modes for a height reference.

with Coordinates Stationing in Elevation see page 4-15 without to start the program

to guit the program

Stationing of elevat. with without

After calling the respective program, a graphics appears with a detailed explanation of the program.

CHCK Adjusting and checking to start the

to start the program by calling point A

👁 Tip

The function of adjusting and checking is required for measurements to be carried out without/with compensator or for checking the adjustment of the instrument.

The display of **A** in negative type indicates the possibility to measure to point **A**.

ON + PNO

to enter the point number and code

(MEAS) to trigger measurement

🕿 Tip

Prior to each measurement triggered with (MEAS) it is possible to enter a point number and a code for the point to be measured. The point number is incremented automatically by 1 without any need to lift a finger.

In the programs, the codes for defined points are invariably set (A, B, C, S) and cannot be changed.

- B to continue in the program by calling point B
- ESC to return to the higher-order menu
- A to repeat point A if required

If A has been calculated, measured or defined as station, the symbol for A (square) is filled. Now, the point B or P can be treated exactly the same way.

👁 Tip

If errors or confusions should occur whilst measuring to the points, the measurement to single points can be repeated immediately.

Connecting Distance

Applications

Connecting Distance

If it is not possible to measure a distance between two points directly, the measurement to these points has to be started at a station point S. Then, the program calculates the distances SD,HD and the height difference h between the points.

Examples for application:

Measurement of cross sections, checking the distances between points, boundaries and buildings

Measurement "Connecting Distance"

СНСК

Adjusting and checking

- A to start by calling point A
- th to enter the reflector height of A
- ON + PNO
- (MEAS) to measure to point A

A = S

page 5-8

In measurements with stationing in elevation, the height Z of the point is additionally displayed.

Connecting Distance

- P-P page 5-7
- A-P page 5-8
 - A to repeat measurement to point A
- DSP to change over the different displays of results

Display of results and saving

Polygonal Connecting Distance P - P

The results are always related to the last two points measured.

- ON + PNO
- (MEAS) to measure to point P

Furthe	er points P:	
th	ON + PNo	(MEAS)

SD	2.448m	A∎₽P
HD	2.441m	HD
h	0.185m	É₽
ESC		th DSP

Display of results and saving

The results are always related to point A.

ON + PNO

(MEAS) to measure to point P

ON + PNO MEAS	th	ON +	PNo	MEAS
------------------	----	------	-----	------

SD	1.072m	A 🖷 🖓	= P
но	0.938m	НО	·
h	-0.519m	•••	. 15
ESC		th	DSP

Display of results and saving

Recording

Presettings First steps	If recording is activated, the following lines are saved in dependence on the settings:	
	Designation	n of the mode
	Point numb	pers and code
	SD, Hz, V	Polar coordinates A,P
	th, ih	Reflector height, instrument height (only if changed)
	SD, HD, h SD, HD, Z	Connecting distance A-P or Connecting distance A-P or
	SD, HD, h SD, HD, Z	Connecting distance P-P or Connecting distance P-P

Object Height

Applications

Object Height

Heights of inaccessible points are determined by measuring SD,V to an accessible point in the plumb line. Only the angle V is measured to the inaccessible point.

Examples for application:

Determination of tree heights, widths of tree tops and trunk diameters, power lines, passageways and bridge profiles, setting out of heights on vertical objects

meas.: : $(SD,V,th)_A, V_P$ requ.: : Z, HD, (O)

Measurement "Object Height"

Object Height

MEAS to measure to point P

further points P

Measurement to point P

Display of results and saving

Definition of a Reference Height ZSet

With **ZSet**, a horizon with a given height can be defined.

- Confirming the old reference height (in this case 0)
- Principles First steps

Z	0.000m
	ipput

- ON + PNO
- (MEAS) to measure to the reference height

Further points:

ON + PNO, MEAS

Display of results and saving

Measurement beside the Plumb Line

Further points:

ON + PNO, MEAS

to the left of the plumb line

Further points:

ON + PNO, MEAS

to the right of the plumb line

Object Height

Recording

Presettings First steps	lf recording saved in de	g is activated, the following lines are spendence on the settings:
	Designatio	n of the mode
	Point numl	pers and code
	SD, Hz, V	Polar coordinates A
	Hz, V	Measuring point P
	HD,O,Z	Measuring point P
	Z	Set value Z

Station + Offset

Applications

Station + Offset

Determination of the rectangular coordinates of any point in relation to a reference line defined by the points A and B.

Examples for application:

Checking of point distances from a reference line, checking of boundaries,

determination of sight rails, determination of the distances of buildings from boundaries, footpaths or streets, alignment of long straight lines in the event of visual obstacles on the

line, surveying of supply lines and channel routes referred to roads and buildings,

free stationing in a local system

 $\begin{array}{ll} \mbox{meas.:} & : (SD,Hz,V)_{A,B,P} \ , \ th \\ \mbox{requ.:} & : (x,y,\omega)_P \ , \ referred \ to \ the \ line \ A-B \end{array}$

 h_{A-B}, h_{A-P}

Measurement "Station + Offset"

Adjusting and checking

A to start by calling point A

Station + Offset

th	to enter the reflector height of A
DSP	to change over the different displays of results
<u>ON</u> +	PNo
MEAS	to measure to point A
A=S	page 5-18

Display of absolute altitude Z (only with stationing in elevation carried out)

Display of height difference h

B to call point B A Measurement to point A to be repeated?

B=S page 5-19

Station + Offset

The results refer to points A and B

SD 2.448m A∎+++++====== HD 2.441m h 0.184m □P ESC A B P DSP

Display of results and saving

Measurement to point P

The result can now be displayed in three different modes.

further points P

ON + PNO

(MEAS)

Display of results and saving y, x, h

Station + Offset

DSP to change over the different displays of results

Display of results and saving x, y, Z

DSP to change over the different displays of results

Display of results and saving x, y, ω

Attention !

If the mode is changed after the measurement, the values will be converted and displayed in the new mode, but saved in this form only after the next measurement.

🖙 Tip

Change the mode before the measurement.

The Station equals Point A A = S

B to continue in the main program

Saving

Station + Offset

The St	ation equals Point B	B =S
YES	Principles First steps	Point B = Station ? Input ih
NO	to reject	
Ρ	to continue in the main program	The results refer to points A and B(S) SD 3.480 m A HD HD 3.480 m h -0.045 m DP ESC A B P Display of results and saving
The St	ation equals Point P	P = S (checking)
	Principles First steps	Point P = Station ? Input ih
NO	to confirm to reject	NO
To cont prograr th (inue in the main n: ON + PNO, MEAS	X 2.521m A ■ ■ B Y 2.399m Y h -0.044m ■ B ESC P = 5 th Display of results and saving

Shifting the Coordinate Axes y, x

If a line does not begin with the coordinate x=0,00, the corresponding value can be entered after having measured the line. If it is a parallel line, the parallel distance y can be entered in the same way. Consequently, the computation is always related to the new and parallel line.

CONS

to call the menu for defining axes

Input of shift values for y and x axes

Principles First steps

Example: x=5,000 m

o.k. to confirm input

ч Х	0.000m 5.000m	
ESC		0.k.

The change is recorded

MEAS

to measure

Display of result after changing the origin of coordinates

d Tip

The input of constants for y and x allows to set out parallel and rectangular lines in an elegant fashion making additional computations superfluous. This applies especially to the intersection of sight rails and setting out of axes. Recording

Presettings First steps	If recording saved in de	is activated, the following lines are pendence on the settings:
	Designatior	n of the mode
	Point numb	pers and code
	SD, Hz, V	Polar coordinates A,B
	th,ih	Reflector height, instrument height (only if changed)
	SD, HD, h	Basis A-B
	SD, Hz, V	Polar coordinates P
	y,x,h y,x,Z y,x,ω	Coordinates P or Coordinates P or Coordinates P and angle ω
	A=S, B=S	
	and P=S	Information lines
	Y,X,h	P=S
	Y,x	constants for y and x

Vertical Plane

Applications

Vertical Plane

A vertical plane is defined by angle and distance measurements to two points. The coordinates of further points in this plane are determined only by an angle measurement.

Examples for application:

Surveying of building façades, heights of passageways, bridges or motorway signs, determination of coordinates in a vertical plane for the determination of heights and volume computations, setting out of sectional planes (planimetry and height) for façade construction

requ.: : (y,x,h)_P

Measurement "Vertical Plane"

Vertical Plane

To measure to further		
points		

xSet page 5-21

y page 5-22

P=S page 5-23

Y∕hX^{⊡P} A∎—DR

пр

 \sim

Display of results and saving

hSet - Determination of the Height Coordinate

Definition of the horizon:

 <u>h</u> 0.000 m Confirm the old reference height (in this case 0)

First steps

h	0.000m
	input

Vertical Plane

Input (1,00)

ON + PNO

(MEAS) to measure Hz and V to point P

To measure further points

The results refer to the new height

Display of results and saving

xSet - Definition of the x - Axis

	<u>x 0.000 m</u>	× 0.000m
	Confirm the old reference height (in this case 0)	input
L	Principles First steps	

Input (1,00)

ON + PNo

(MEAS) to measure Hz and V to the desired point P

Vertical Plane

The results refer to the new x - axis (in this case, the desired and set zero point of coordinates has been measured)

To measure further points

Display of results and saving

ySet - Points before or behind the Plane

<u>y 0.000 m</u>
Confirm the old
value (in this case 0)

to measure Hz and

V to point P

- y = 0Set to zero

First steps

ON + PNO

(MEAS)

After entering y=0,350m:

Display of results and recording
Applications

Vertical Plane

The Sta	ation equals Point P	P=S	
L	Principles First steps	Poin	t P = Station ?
YES	to confirm	NO	INPUT IN
NO	to reject		
ESC	further points	Coordinates X 9 h Display of re	s of S with reference to plane A-B 2.502m 2.409m -0.046m ABB ABB ABB ABB ABB ABB ABB AB
Record	ling		
	Presettings First steps	If recording saved in de	is activated, the following lines are pendence on the settings:
		Designation	n of the mode
		Point numb	ers and code
		SD, Hz, V	Polar coordinates A,B
		th,ih	Reflector height, instrument height (only if changed)
		SD, HD, h	Basis
		Hz,V	Р
		y, x, h	Р
		P=S	Information lines
		Y,X,h	P=S

Applications

Area Calculation

Applications

Area calculation

Area calculation by measurement to the corner points *or* input of the corner point coordinates of the area or calling them from the memory. A direct combination of both methods is impossible (see page 29).

The area is limited by straight lines. Any number of corner points can be used.

meas.: : $(SD,Hz,V)_{A,B,C,Pi}$ given.: : $(y,x)_{A,Pi}$ $(Y,X)_{A,Pi}$ comp.: : FI (A-B-C-Pi)

Range:

or

 $0,01m^2 + 0,01m^2 < FI < 90\ 000\ 000m^2 + 1m^2$

Measurement "Area Calculation"

PRUE

А

m

Adjusting and checking

to start by calling point A

Attention !

The points of the area are to be measured, called from the memory or entered in proper order. In each case, the last point can be repeated. It is <u>not</u> possible to insert a forgotten point <u>subsequently</u>.

Area Calculation

F1 F2

👁 Tip!

If not all points can be seen from one station, the following procedure is recommendable:

Divide the corner points into groups so that all corner points can be seen from two or more stations.

1st corner point group

Determination of corner point coordinates of the area by means of

- stationing in a local or global network and
- polar measurement of the 1st group Coordinates of these points are now stored in the instrument memory

2nd corner point group

Move the instrument to another place from where the remaining points of the area can be seen.

- stationing in a local or global network (as for

the 1st group) and measurement of the remaining points

- all points are now stored in the memory

Starting the area calculation

- Call the corner points of the area from the memory considering the order

This method works only in case of instruments with internal memory. The Timble 3306 only allows to measure the points. It is possible, however, to calculate an area (F) to be covered through various stations. The subareas (F1+F2) are arranged in such a way that they can be assembled to a total area. A stationing is not necessary for this purpose.

F = F1 + F2

Area Calculation

The operational steps for point B and C are now carried out in analogy to point A.

After measuring to A,B and C, the area is calculated for the first time:

- ESC to quit the program
- c to repeat measurement to point C
- P to continue in the program by calling point P
- o.k. to quit the area calculation and store the result

Applications

Area Calculation

Rept	to repeat the last point Pi
Р	1

- to continue in the program by calling point P_{i+1}
- o.k. to quit the area calculation and store the result

Display of result after measuring to another point Pi:

🖝 Tip!

Any number of corner points can be used.

Recording

Presettings First steps	If recording is activated, the following lines are saved in dependence on the settings:	
	Designati	on of the mode
	Point numbers and code	
	y,x or	
	Y,X	Coordinates point A, B, C, P _i
	SD,Hz,V	Reading point A, B, C, P _i
	FI	Area

5-32

Decisive features of an efficient work routine are
the saving of the measured and computed values
as well as the transfer of measured data to a PC
and the transfer of coordinates from the PC to the
surveying instrument. This chapter describes all
processes necessary to meet these requirements.
The section <i>Editor</i> only applies to Trimble 3303
and Trimble 3305.

Editor	6-2
Data Transfer	6-8
Data Formats	6-13
Interface	6-31
Remote Control	6-33
Data Record Lines	6-41
Updates	6-47

Calling the EDIT Menu

ON	EDIT

Display of the free data lines and address of the last data line written

Display of Data Lines

Attention !

In the coordinate and application programs, fixed codes are assigned to certain data lines. Such codes cannot be modified by the operator.

Searching for Data Lines

?	to call search function
?P	to search for point number
?C	to search for code
?A	to search for address

Input of the point number, code or address to be searched for

- to continue search using the same criterion
 to change page
 to display preceding data line
 to display following data line
 ESC
 to quit search
 - to quit search routine

🕿 Tip

If no data line is found to which the search criterion applies, search is followed by an error message.

Deleting Data Lines

Del to call the function "Delete"

Technical Information

This function deletes all data lines or the data lines <u>from</u> a selected line number (address) to the last data line saved.

Attention !

The deletion is definite and irrevocable. To avoid any unintentional loss of data, utmost care has to be taken over this action!

- all to select all lines ?P or from the line
- with point number
- c or from the line with code xx
- **?A** or from the line with address xx

Data Management Editor

Example: search for point number 2

0050

0111

For another check, the selected data lines are displayed again and have to be confirmed.

- YES to confirm the selection
- NO to reject the selection / quit the routine

Entering Data Lines

Inpt to call the function "Input" Last address 30 U ESC Disp Del Inp

- to enter the planimetric coordinates
- xyz to enter planimetric coordinates and heights
- z to enter heights
- Input of data lines ESC YX YXZ Z

Example of a height input:

- Z 149,362 m Confirmation of the old value (in this case 149,362 m)
 - $\frac{Z = 0}{\text{Set the height to}}$
- Principles

Z 149.362m Z =0 input

Input of further coordinates and heights with point number and code

Presettings First steps

Attention !

The sequence and designation of the coordinate axes depend on the selected system of coordinates and the setting of the display of coordinates. The softkey YX and YXZ, respectively, is labelled according to this selection.

Data Management

Data transfer car	n be performed		
between	and	by	
Trimble 3300	PC		Cable

This allows an easy data exchange between instrument and computer.

Preparing the Instrument for Data Transfer

ON MENU

5 Interface

YES

- to go to the menu
- MOD to change settings

Menu Interface Trimble 3300

	2	Parit	ty		even
$\mathbf{+}$	3	Baudr	ate		9600
	4	Proto	COL	XONZ	XOFF
Ш	SC	个	<u>ф</u>		MOD

Trimble 3300 \leftrightarrow PC Connect both devices by the serial interface cable and start the necessary programs for data transfer.

Order number 708177-9470.000

Interface parameters for transmitting and receiving project files:

Baud rate:	9600
Protocol:	Xon/Xoff
Parity:	even
Stop bits:	1 (not variable)
Data bits:	8

🛥 Tip

For data transfer to and from the PC, you can use for example the MS-WindowsTM Terminal program.

PC Terminal Settings

Example for Windows[™] 3.xx Terminal program: Set the PC for data transfer as follows:

	Communications				
Baud Rate OK ○ 110 300 600 1200 ○ 2400 4800 95600 19200					
_Data Bits ○ % ○ 6	Data Bits Stop Bits ○ 5 ○ 6 ○ 7 ● 8 ● 1 ○ 1.5 ○ 2				
<u> </u>	<u> ∏Elow</u> Control	<u>C</u> onnector			
🖲 None	Xon/Xoff Xon/Xoff	None +			
O Odd	⊖ Hardware				
CEven	O None				
🛛 🔿 Mark					
○ Space	Parity Chec <u>k</u>	Carrier Detect			

For sending or receiving a project file, set the terminal preferences as shown in the follows:

— Term	inal Preferences
Terminal Modes │ Line <u>W</u> rap │ Local <u>E</u> cho │ <u>S</u> ound	CR → CR/LF □ Inbound □ Otbound Cursor
Columns	● <u>B</u> lock ○ <u>U</u> nderline
○ <u>8</u> 0 ● <u>1</u> 32	🛛 Blin <u>k</u>
Terminal <u>F</u> ont Letter Goth ↑ 12 MS LineDra Terminal ↓	Iranslations None United Kingdom Denmark/Norway ⊠ [BM to ANS]
⊠ S <u>h</u> o₩ Scroll Bars ⊠ Use Function,Arro	Buffer <u>L</u> ines: 100 w,and <u>C</u> trl Keys for Windows

To transmit a project file, select "Send text file" or "Receive text file".

Data Transmission

Interface

5

Instrument Settings:

YES to go to the menu

MEM ----> Peripheral

YES to confirm Data transfer menu between Trimble 3300 and PC

1	MEM	-> Pe	riph	ery
↓ 2	Per i	phery	\rightarrow	MEM
ESC		4		YES

Selection of the required data lines

Editor Data Management

@ Tip

Now, set the PC to "Receive text file". The instrument or program at the receiving end must be set to the receive mode before you can transmit the project file.

alt

data

1

to start

to Adr. : 32 ΝO

Transfer

from Adr.:

The data lines are transferred to the PC.

Data Reception

Interface

On the instrument:

5

to go to the menu

2 Peripheral -----> MEM

YES to confirm

Data transfer menu between PC and Trimble 3300.

Enter the name of the source file into the PC

Start the transfer from the PC

The data lines are transferred to the Elta® R.

Attention !

The instrument only accepts coordinates.

ESC

to end data reception

data	ιi	ine	2S
recei	Ve	ed :	
accer) te	20 :	

207 207

🖝 Tip

Time Out occurs after 30 seconds without data communication.

The message "Time Out" indicates a data error. After that, the program returns to the data transfer menu.

Introduction			
	Trimble surveying instruments are used for measurement functions with different data processing requirements.		
	The 3300 series allow densely packed internal measurement and result data lines to be output in various formats.		
M5, R4, R5, Rec500 record format	Four data formats which have grown historically are subject to on-site revision service for compatibility with customer instruments. Currently, M5 is the format		
	to provide most comprehensiveness in definitions. It should be used preferentially for any other tasks.		
	This chapter describes the structure of data format and the type identifier of measured and calculated values.		
Data transfer	Technical		
Data management User interface Data management	All instruments have a serial interface which ensures the data exchange.		
	Attention!		

Instead of the usual marks within the 27 digit point identification, the M5 data format of Elta * R is limited to a 12 digit point number and a 5 digit code.

Description of M5 data format

"M5" -> 5 Measuring data blocks per data line:	The Zeiss M5 data format is the common standard for all current Zeiss Elta®surveying systems.
 Address block Information block numerical data blocks 	All 5 data blocks are preceded by a type identifier. The 3 numerical data blocks have a standard layout comprising 14 digits. In addition to the decimal point and sign, they accept numeric values with the specified number of decimal places. The information block is defined by 27 characters. It is used for point identification (PI) and text information (TI e.g.). The address block is comprised of 5 digits (from address 1 to 99999).

The M5 data line

The data line of the M5 format consists of 121 characters (bytes). The multiplication of this figure by the number of addresses (lines) stored shows the size of the project file in bytes.

Blanks are significant characters in the M5 file and must not be deleted.

The example describes an M5 data line at address 176 with coordinates (YXZ) recorded in unit **m**. The point identification of marking 1 is **DDKS S402 4201**. Column 119 includes a blank (no error code).

The end of the line has CR, LF (columns 120 and 121, shown here as \leq).

121	345678901	•dim5 ?<=		= 	
110	:345 <i>6</i> 789012	15678901234	-Value5>	334.784	
100	6789012	T5•1234	~>	N	
90	9012345	edim4	~	E S	1
80	6789012345678	1234567890123	<value4< td=""><td>74968.79</td><td></td></value4<>	74968.79	
70	789012345	dim3 T4-		m X	
60	34567890123456	12345678901234	<value3></value3>	56590.405	
50	9012	T3-		×	
40	3456789012345678	2345678901234567	lue2 <mark>></mark>	201	
30	34567890123	23456789012	Va	DKS S402 42	
20	5678901 <mark>2</mark>	<mark>15</mark> T2a - <mark>1</mark>	e1	16 PII D	
10	45678901 <mark>234</mark>	M5 Adr 123	Valu	M5 Adr 1	
1	123	For		For	
La	yout	Assigi	nment	Exar	nple

Col. 120-121: Column 119: Col. 114-117:	Carriage Return < , Line Feed Blank field, in case of error "e" Unit for block5					
Column 99-112:	Block5 value block					
Column 96-97: Column 91-94:	Type identifier5 for block5 Unit for block4					
Column 76-89:	Block4 value block					
Column 73-74: Column 68-71:	Type identifier4 for Block4 Unit for block3					
Column 53-66:	Block3 value block					
Column 50-51:	Type identifier3 for block3					
Column 22-48:	Information block PI or TI (point identification PI or text information TI, TO etc.)					
Column 18-20:	Type identification2 Pla (a=1-0, for 10 Markings) or TI					
Column 12-16:	Memory address of data line					
Column 8-10:	Type identifier1 Adr for address					
Column 1-6:	Defines M5 format					
■ blank	separator					

Explanations to the data line

Abbr.	Description	Digits	Characters	Meaning
For	Format identifier M5 Format type	3	alpha 2	Trimble 3300 Format alpha 5
		meas. c	lata blocks	
Adr	Address identifier Value1	3 5	alpha numeric	Value1 Memory address
T2 a	Type identifier Marking Value2	2 1 27	alpha numeric alpha	Value2 (Pla ,Tl, TO) a=1, 2, 3 ,, 9, 0 Pl or Tl
T3 dim3	Type identifier Value3 Unit	2 14 4	alpha numeric alpha	Value3 14-digit value 4-digit upit
ariii.	orm	·	alpila	r aigit anit
Т4	Type identifier Value4	2 14	alpha numeric	Value4 14-digit value
dim4	Unit	4	alpha	4-digit unit
Т5	Type identifier Value5	2 14	alpha numeric	Value5 14-digit value
dim5	Unit	4	alpha	4-digit unit
?	Identifier	1	alpha	Error message, or ■
Special characters			ASCII code	Hex code
	Separator	1	ASCII 124	Hex 7C
•	Blank	1	ASCII 32	Hex 20
<	CR (Carriage Return)	1	ASCII 13	Hex OD
=	LF (Line Feed)	1	ASCII 10	Hex OA

For your information only! Trimble 3300 - Page 6-23

The point identification PI in M5 Format

The PI is comprised of 27 characters. It starts in column 22 and terminates in column 48 in the M5 data line. The data structure within the PI is defined by markings. A maximum of 10 markings, marked in the preceding type identifier with PI1 to PI0 (columns 18, 19, 20), can be designated to the PI (depending on the instrument).

For your information only! Trimble 3300 - page 6-26

The type identifier in the M5 Format

In the course of the time, requirements on the data format have increased. Therefore, the M5 Format carries most of the type identifiers of all available formats, always based on the preceding format (Rec500).

Type identifiers are defined by two characters (except for Adr). If only one character is necessary, the second character is a blank.

In the M5 Format there are 5 Type identifiers (TK) defined:

TK1:	Adr	Identifier address (Value1)
TK2:	T2	Identifier information (Value2)
TK3:	Т3	Identifier 3. Value field (Value3)
TK4:	T4	Identifier 4. Value field (Value4)
TK5:	T5	Identifier 5. Value field (Value5)

Example:

"PI" for point identification or "TI" for text information can be used for T2. For T3, T4, T5, "D", "Hz", "V" or "Y", "X", "Z" can be used.

Description of Rec 500 data format

"Rec500" stands for the description of the electronic field book Rec500.		With the electronic field book Rec500 a data format was developed which was created for CZ instruments years ago and is today the base for the M5 format				
 Address block Block Information Numeric data blocks 		The Rec500 format is divided in 5 marking blocks (analogous the M5 format). These blocks differ in their block length from the M5 format, 80 characters (Bytes) are available on a data line.				
		The Rec500 Data line				
		The data line in the Rec500 format is comprised of 80 characters (Bytes).				
Abbr.	Description	Digits	Characters	Meaning (w. example)		
Wl	Address	4	numeric	Memory address		
PI	Point identification	27	num / alpha	Point identification (14- digits) and additional information (13 digits)		
Τ1	Type identifier 1. Value	2 12	num / alpha numeric	$\begin{array}{l} D = \text{slope distance} \\ E = \text{horizontal distance} \\ Y = \text{coordinate, etc.} \end{array}$		
т2	Type identifier 2. Value	2 13	num / alpha numeric	Hz=horizontal direction X = coordinate, etc.		
Т3	Type identifier 3. Value	2 9	num / alpha numeric	V1=zenith angle $Z = coordinate, etc.$		
Special	characters		ASCII code	Hex code		
•	Blank	1	ASCII 32	Hex 20		
<	CR (Carriage Return)	1	ASCII 13	Hex OD		
=	LF (Line Feed)	1	ASCII 10	Hex 0A		

15678901234567890123

456789012 08

890123 20

50

Data Formats

Ŷ		Ŷ		Column	79-80:	Са
L23456789	(3.Wert->	102.1234		Column	70-78:	3.
•T31	v	Υ1		Column	68-69:	Ту
234567890123	2.Wert>	259.0128		Column	54-66:	2.
•T21	v	Ηz		Column	52-53:	Ту
1123456789012	<1.Wert>	178.042		Column	39-50:	1. Tv
H	~	t D		Column	37-38:	Тy
CDEFGHLJKLI	usatzinfo.)	steck Punk		Column	23-35:	ad (al
4AB	Ň	Ab		Column	9-35:	Ро
1234567890123	<- PktKennung-	312496		Column	9-22:	Po (ni
234	W1>	089		Column	4-7:	m
-		H		Column	1-3:	31
∎ Belei	auna	▲ Bei	spiel	Blank		
Juc	gung	UG				

For information only! Trimble 3300 - page 6-24

Lineal

Column 79-80:	Carriage Return $<$, Line Feed $=$
Column 70-78:	3. Value block
Column 68-69:	Type identifier for 3. Value
Column 54-66:	2. Value block
Column 52-53:	Type identifier for 2. Value
Column 39-50:	1. Value block
Column 37-38:	Type identifier for 1. Value
Column 23-35:	additional information of PI (alpha numeric)
Column 9-35:	Point identification PI
Column 9-22:	Point Number of Pl (numeric)
Column 4-7:	memory address of data line
Column 1-3:	3 Blanks
■ Didf1K	

The point identification in Rec500 Format

The PI is divided into two areas:

- Area 1: numeric area for point marking (point number)
- Area 2: alpha numeric area for additional point information

Description of R4 and R5 (M5, Rec 500) format of Trimble 3300

 "R4" stands for the data recording format of the Trimble 3300 instruments containing 4 measuring data blocks: 1 Information 3 numeric Data blocks "R5" stands for the data recording format of the Trimble 3300 instruments containing 5 measuring data blocks: 1 Address block 1 Information block 3 numeric Data blocks 		Two data recording formats - R4 and R5 - are available in the Trimble 3300 total stations. Both formats can be chosen in the instruments. Depending on the setting with or without address, either data record format R5 (with address) or R4				
		(withou	t address) can be	used.		
		R4 and R5 format data lines The data line in the R4 format contains 80 characters (Bytes). It is comprised of an information block and 3 numeric value blocks. The data line in the R5 format contains 89 characters (Bytes). It is comprised of one address block, one information block, 3 numeric value				
		blocks. Both formats contain the same type identifiers for each block				
Abbr.	Description	Digits	Characters	Meaning		
For R4,R5	Marking format format type R4, R5	3 2	alpha alpha	Trimble 3300 Format 4 or. 5 Data blocks		
Adr <aa></aa>	Address marking Value1	3 4	alpha numeric	3 digits for marking Address in R5 Format		
Tk <info></info>	Tk Type identifier Info <info> Info</info>		alpha num / alpha	Type identifier TR or KR Info for data line		
Ti <wi> dimi</wi>	Type identifier Value i Value i $(i = 1,2,3)$ dim i $(i = 1,2,3)$	2 11 4	num / alpha numeric alpha	Type ID Value block Value block Value i Unit block Value i		
~~~ <b>•</b>						

Special charactersM5 Data format

The special characters  $\blacksquare$  ,  $\mid$  , < and = are analogous the M5 format.

_						I
ω.	7890	.3  <=	$\stackrel{\parallel}{\lor}$	<u>"</u>	<u> </u>	
	8456	mib.		E	E	
70	234567890123	12345678901	<wert3></wert3>	512.358	112.4458	
<u> </u>	5678901	im2 T3•		2	LA	
	234	1-d	~	Ē	Ē	
20	23456789013	1234567890	<wert23< td=""><td>1.65</td><td>399.971</td><td></td></wert23<>	1.65	399.971	
40	45678901	dim1 T2-		di  m	m Hz	
30	23456789012 <mark>3</mark> ,	12345678901-0	<wert1></wert1>	0.000	12.323	
8	9012	T1-	Y	$^{\mathrm{th}}$	SD	
0	<mark>1234567</mark> 8	1234567	<-Info>	EINGABE	-	
	1234567890	For R4  Tk		For R4 TR	For R4	
Lir	 neal	 Beleg	gung	<b>≜</b> Bei:	 spiele	

The I	R4 D	ata I	ine
-------	------	-------	-----

Column 79-80:	Carriage Return $<$ , Line Feed $=$
Column 74-77:	Unit for 3. Value block
Column 62-72:	3. Value block
Column 59-60:	Type identifier for 3. Value block
Column 54-57:	Unit for 2. Value block
Column 42-52:	2. Value block
Column 39-40:	Type identifier for 2. Value block
Column 34-37:	Unit for 1. Value block
Column 22-32:	1. Value block
Column 19-20:	Type identifier for 1. Value block
Column 11-17:	Data line information
	(alpha numeric)
Column 8-9:	Type identifier information
Column 1-6:	Defines R4 format
■ Blank Separato	pr

0				I
7 8 9 8 - 8	⊻		$\leq$	⊻
8456 8	lim3		-	lon
80	01.		48 n	48
7891	789	t a -	2.3	.34
456	456	Wer	51	112
0123	123			
7890	[T3-		Z	LV
45 6	im2		_	uo
123	P-E	<u>^</u>	E 0	0.0
9-062	1890		L. 65	971
4567	4567	Wert	•••	399
123	123			
2-06	т2-		цi	Ηz
4567	im1.			
123,	- p	~	E 0	Ĕ
890-4	890	1-	. 00	. 32
567	1567	lert	0	12
1 L234	1234	1 1 1 1 1		
ю-06 8901	÷.	v	th	SD
567	67	A	ABE	34
1 234	2345	-Inf	INGE	Ե
89 <mark>-</mark> 2(	k.	Ý	E E	ы В
<mark>5</mark> 671	<u>4</u>   T	Δ.	4 T.	<mark>5</mark> K
234	123	<aa)< td=""><td>123</td><td>123</td></aa)<>	123	123
1001	-Jdr		$_{\rm dr}$	fdr
5676	R5   2		R5   3	R5   1
234)	or •]		or	0 L
ਰ-ਰ	⊑ 		E4 	⊑ .≜
Lineal	Dele	gung	Dela	piele

The	R5	Data	line
-----	----	------	------

Column 88-89:	Carriage Return $<$ , Line Feed =
Column 83-86:	Unit for 3. Value block
Column 71-81:	3. Value block
Column 68-69:	Type identifier for 3. Value block
Column 63-66:	Unit for 2. Value block
Column 51-61:	2. Value block
Column 48-49:	Type identifier for 2. Value block
Column 42-46:	Unit for 1. Value block
Column 31-41:	1. Value block
Column 28-29:	Type identifier for 1. Value block
Column 20-26:	Data line information (alpha numeric)
Column 17-18:	Type identifier information
Column 12-15:	Memory address of Data line
Column 8-10:	Type identifier <i>Adr</i> for address
Column 1-6:	Defines R5 Format

■ Blank Separator

#### The point identification in the R4/R5 Format

For a point identification in the R4 and R5 format are max. 7 digits available.

The PI is controlled by two Type identifiers, TR and KR, which describe the kind of PI.

- TR Type identifier for a text information block
- KR Type identifier for a PI with code and point number.

Point number: 0...9, right-aligned, 4-digit

Point code: 0...9, Blank, # 3-digit

The 3 digit code can be combined with additional characters. It is suggested to use the character # for marking incorrect measurements.

#### 3300 - Marking in the M5/Rec 500 Format

The Trimble 3300 uses a mark which is saved internal in the instrument. This mark consists of 3 blocks with clearly defined block lengths. The user is able to manipulate the order of the 3 blocks.

Examples:

Layout gage:	1 12345678	10 9012345678	20 9012345	27 67
Sample Marking:	PPPPPPPP	PPPP CCCCC	IIIII	II
Sample Marking:	IIIIIII	CCCCCPPP	PPPPPPP	PP
	Meaning:			
PPPPPPPPPPP	12-digit poi	nt number		
CCCCC	5-digit poin	t code		
IIIIIII	7-digit infor	mation block		

#### 👁 Tip

The information block (**I**) is left-aligned, the code (**C**) and point number (**P**) are right-aligned.

Upon data conversion to the R4 / R5 format, the point number and point code will be shortened to 5 and 3 digits, respectively. The right-aligned digits remain.

# Change settings of Trimble 3300 – Markings in the M5 / Rec 500 format

#### ON MENU

#### 5 User interface

YES go to the menu

ተ	5	Posi	tion	С	11
	6	Posi	tion	Р	16
$\Phi_{-}$	Ζ.	Posi	tion	Ι	1
Ε	SC	· 个	4		MOD

#### 🖙 Tip

In case of overlapping information in the blocs, the instrument returns into its initial state (Default).

#### Trimble 3300 - Markings in R4/ R5 format

In instruments of the Trimble 3300 Serie one marking can be used.

In both the R4 and R5 format 7 characters are available for point identification and marking.

The PI is controlled by two type identifiers TR and KR, which mark the kind of the PI.

- TR Type identifier for one text information block
- **KR** Type identifier for a PI with code and point number.

Point number: 0...9, right-aligned, 4-digit

Point code:

3-digit

0...9, Blank, #

The 3 digits in the code can be combined with any applicable character. It is sug gested, to use the character # to mark incorrect measurements.

Examples:

- Layout gage: TI 1234567
  - Text information: **TR IIIIII**
- Point number and code: KR CCCPPPP

Meaning:

- **IIIIII** 7-digit Text information block
  - CCC 3-digit Code block
  - **PPPP** 4-digit Point number block

In the M5 / Rec500 Format a 5-digit code and a 12-digit point number are used. In the R4 / R5 Format the established digits (3 and 4, respectively) remain right-aligned.

#### Definition of type identification

Definition	Type identifiers are assigned to the 5 measuring data blocks of pre-set codes, which show the number or character value of the block.
Type ID´s are defined with two characters.	Type identifiers are (except for <b>Adr</b> ) defined with two characters. If only one character is necessary, the second character is blank. The code is case sensitive.
	The following table lists all Type identifiers in alphabetical order according to the CZ Data Formats and the possible position of characters after the comma (,????) as well as signs (±):

#### Type identifiers - CZ Formats M5, R4, R5, Rec500 (Trimble 3300)

Type identifier	,????	±	Meaning
А	2,3,4		Distance addition constant
а	6		Horizontal angle of orthogonal line
Adr	-		Address (the only TK with 3 characters)
В			V-angle of control point
С	3,4,5		Collimation correction
c_			Sighting axis error
dl	2,3,4		Longitudinal deviation
dq	2,3,4,5		Transverse deviation
dr	2,3,4		Radial deviation in setting out
dx	2,3,4		Coordinate Difference /Deviation in X direction
dy	2,3,4		Coordinate Difference /Deviation in Y direction
dz	2,3,4		Coordinate Difference /Deviation in Z direction
HD	2,3		Horizontal distance
HV	3,4,5		Hz rotation
Hz	3,4,5	±	Horizontal direction

## Data Management

Data Formats

Type identifier	,????	±	Meaning
h	2,3,4	±	Height difference of a station
i	3,4,5		Index correction
ih	2,3,4		Instrument height
KR			Information Elta [®] R with code and point number
m	6		Scale
NZ	3,4,5		Compensator reading, sighting direction
0	2,3,4		Transverse distance (indirect height determination)
Om	3,4,5		Orientation (stationing) Omega
Р	0,0,1		Air pressure (in hPa, Torr or InMerc)
PI			Point Identification (general)
ра	2,3,4		Parallel distance in 3-D plane
SD	2,3		Slope distance
SZ	3,4,5		Compensator run center: component in line of sight direction
Т			Text ID in Rec500 Format
Tv	2,3,4		Type of target eccentricity
Th	2,3,4		Type of target eccentricity
TI	2,3,4		Type of target eccentricity
Tr	2,3,4		Type of target eccentricity
Ts	2,3,4		Type of target eccentricity
TI	-		Text information line
TR			Information Elta [®] R as text information
T_	-		Temperature (in °C or °F)
th	2,3,4		Reflector height
V1	3,4,5		Vertical angle: zenith angle
V2	3,4,5		Vertical angle: vertical angle
V3	3,4,5		Vertical angle: height angle

Data Management		Data Formats			
V4	3,4,5	Vertical angle: slope in [%]			
vy	2,3,4	backsight point residuals			
VX	2,3,4	backsight point residuals			
VZ	2,3,4	backsight point residuals			
Х	2,3,4	X - Coordinate			
х	2,3,4	x - Coordinate (lokal)			
У	2,3,4	y - Koordinate (lokal)			
Υ	2,3,4	Y - Coordinate			
У	2,3,4	y - Koordinate (lokal)			
Z	2,3,4	Z - Koordinate (Height above N.N.)			

#### Description Value blocks

3 Value	blocks	In each of the Zeiss Elta [®] Formats three value blocks are available whose number of digits depends on the format:						
		Format	Value1	Value2	Value3	dim		
		M5 R4/R5 Rec500	14 11 12	14 11 13	14 11 9	4 4 -		
	Type identifiers	All value blocks are preceded by a type identifier which specifies the function of the succeeding value.						
		In the M5 and R4 / R5 Format for the value block exists a unit (dim), which follows , 4-digit (divided by a Blank), the value block.						
		The values are typed right-aligned in the blocks. Decimal point, digits after the comma and definitions of preceding characters correspond to the internal instrument specifications.						
		d Caution!						
		If the files of the Zeiss Elta [®] Formats are entered manually, it is important to remember that upon using the data in the instrument the digits after the comma and the units need to be adjusted correspondingly.						
		The following units are defined:						
Angle measurement		gon, DEG, DMS, mil, grad, %						
Distanc	es, Coordinates	m, ft						
Pressure	9	TORR, hPa, inHg						
Temper	ature	C, F						
Standar	d, PR etc.	no unit						

#### Zeiss Elta[®] Format ID and address block

Zeiss Elta [®] Format ID in Columns 1-6		In the formats M5, R4 and R5 a marking which corresponds to the format precedes the data line.						
	For MS	5	Format marking for M5 Format					
For R4			Format marking for R4 Format					
	For RS	5	Format marking for R5 Format					
			"For" and the marking M5, R4 or R5 are divided by a Blank (ASCII 32). An exception is the M5 Format for the former GePoS® receiver:					
For_M5 Format marking receiver of softv				ng M5 Format for former GePoS® tware versions less than V3.7:				
			In this case, "For" and the marking M5 is divided by a "_" (ASCII 95).					
			From V3.7 on, the Format marking is <b>For M5</b> .					
Address blocks			The Formats M5, Rec500 and R5 have an address block which marks the data line with the current memory address. In the M5 and R5 format, a type identifier Adr is activated:					
			Format	ТК	Column	Digit		
			M5	Adr	12 - 16	5		
			R5	Adr	12 - 15	4		
			Rec500	none	4 - 7	4		
Adr 00001 or Adr 1 is allo	wed.		The address entry is right-aligned. Zeros can be used but are usually omitted. The first data line starts with the memory address 1.					
#### Data output on a printer

Direct data output from the instrument to the printer or form the PC:

The R4 data recording format ensures problemfree printout on A4 printers, with each print line comprising one data line. To achieve the same with the R5 data recording format, the following should be noted:

- Direct data transmission to a printer Select condensed font in the printer or use A 3 printer
- Printing data from a DOS editor Select condensed font in the printer or use A 3 printer
- Printing from a WINDOWS task Do not use true type font or proportionally spaced font, but e.g. Courier Select a small type size Use landscape print format
  - Attention!

For printing of data lines from the instrument at a printer is a serial type of printer interface necessary.

#### Introduction

This charpter decribes the conditions of data transfer, the pin assignment of the interface and key codes and function requests for controlling the instrument by a computer.

#### What is an Interface?

	An interface is the point of contact between two systems or system areas, i.e. the point where information is interchanged. To ensure that it is understood by both the transmitting and receiving unit, specific rules must be defined for the transmission of signals and data.
Hardware interface	a physical connection between functional units such as measuring instruments, computers or printers. Of significance for the user are:
	• shape and pin assignment of the connectors on the functional units and connecting cables
	• The data transmission method. The parameters and protocols for transmission control
Software interface	Software interfaces establish the link between programs or program modules. The data to be transmitted must conform to a defined structure: the record format
User interface	also called user guidance, important for handling of a system.
	Interfaces between the user and the system are the monitor, the keyboard and the options for user guidance provided by the software. In the Trimble 3300 concept, special emphasis has been placed on the design of the user interface.

#### Hardware interface



Interface functions:

The interface for the peripheral equipment is of the asynchronous, serial type and conforms to DIN 66020 standard (V 24 / RS 232 C).

The interface is provided on the slip ring connection.

(1) Data transfer:

Direct transmission of measured data between Trimble 3300 and the connected peripheral instrument (computer, printer,...). A series of transmission parameters are available for the control of this process.

(2) Software updates for the Trimble 3300 can be loaded via this interface .

# Pin assignment of the interface /connecting cable

Pin	Signal	Direction	Designation
1	-	-	
2	Ground	-	Ground (-U _{batt} )
3	-	-	
4	SD	Output	Transmitted data
5	ED	Input	Received data
6	Vcc	In	External power
			supply (+U _{batt} )
7	Vcc	In	External power
			supply $(+U_{batt})$
8	Ground	-	Ground (-U _{batt} )

#### Connecting cable:

Cable 708177 - 9460 is used for external data recording and for data transfer to a PC. You can also use cable 708177 - 9470 (with angled plug) if the Trimble 3300 is installed on a tripod during data transfer.



Pin assignment (exterior view of connector), 8-pin female stereo connector

#### Introduction

This charpter decribes the conditions of data transfer, data transmission protocols, overviewe about key codes and answers of the PC for the instrument control.

#### XON/XOFF Control



The XON/XOFF protocol is a very simple, but efficient data transmission protocol. It is preferably employed for so-called terminal programs (e.g. terminal under Windows or Xtalk) and can be used in data recording from the Elta® R to a computer.

#### Rec 500 Software Dialog (Rec 500 Protocol)



Control diagram of the `Rec 500 software dialog ´

The following definitions apply to the time values entered in the control diagram:

 $t_1$ : Interval between signal A from Trimble 3300 and the response from the recording unit with signal B, and interval between the end of data transfer and the acknowledgement with signal B.

 $0 > t_1 < t_{(Time-Out)}$   $t_1 = 20 s$ 

The recording unit may respond without delay to the recording request from the Trimble 3300. However, the selected time-out  $t_{(Time-out)}$  must not be exceeded; otherwise an error message is displayed and external recording is deactivated. The Trimble 3300 assumes that no external recording unit has been connected.

 $t_2$ : Interval between the acknowledgement of the reception of a data line by the connected recording unit with signal B and the transmission of a further data line. Depending on the type of recording line involved, this amounts to

 $10 \text{ ms} > t_2 < 100 \text{ ms}$ 

Rec 500 software dialog is also suited for data transmission to the Trimble 3300 The control diagram is identical to the one shown above, with the designations of the transmitted data line and received data line being interchanged, as data is now transmitted by the peripheral unit.

#### Key Codes and Function Requests

If the Trimble 3300 is controlled by a computer, the keys can be emulated with the following codes:

Key	Code	Key	Code
F1	T31₊J	ON+F1	TB1,⊣
F2	T32₊J	ON+F2	TB2₊J
F3	T33₊J	ON+F3	TB3↓
F4	T34₊J	ON+F4	TB4₊J
F5	T35₊J	ON+F5	TB5₊J
MEAS	T4D₊J	ON+MEAS	TCD↓
J symbo	ol for CR/LF		

The Trimble 3300 can be controlled either by key pressure or, equally, from a connected computer. Each recognized key code is acknowledged by the Trimble 3300 with 'Q,  $\downarrow$ '; in the event of errors such as incorrect syntax of the call or data transmission errors, the response is 'E,  $\downarrow$ '.

Function requests:

Code	Meaning
FKO↓	Compensator reading in sighting direction
FMD↓	Slope distance SD
FMW↓	Angle readings Hz, V
FMS↓	SD, Hz, V
FMR↓	HD, Hz, h reduction
FMK↓	y, x, h local coordinates

Each function request is answered with a data line in the selected format. The with/without address setting is effective. Only the XON/XOFF protocol is used.

#### Attention!

The values entered for scale, addition constant, index and collimation correction are taken into account in all function requests.

#### Parameters:

```
Reading: ?KTTT↓
Response: !KTTT∆∆|1234567890123456∆unit↓
Setting: !KTTT∆∆|12345678901234∆unit↓
Response: Q↓
The response to a reading command is identical
with the setting command.
In the event of errors such as incorrect syntax of
the call or data transmission errors, the response
is 'E↓'.
```

#### Designations:

?K	fixed character string for reading
!K	fixed character string for setting
TTT	type identifier (see examples)
₊	carriage return/line feed
	separator, ASCII dec. 124
1-6	numerical value, 16 characters
$\Delta$	blank, ASCII dec. 32
unit	unit of the associated numerical value,
	4 characters or blanks
Q	acknowledgement

#### Examples for the parameter calls:

?K00AJ Instrument Identification $!K00A\Delta   \Delta 702718-0000.730\Delta \Delta \Delta \Delta J$	RO
?K00aJ Serial Number	RO
?KSNDJ Acoustic Signal	RW
$! \texttt{KSND} \Delta \Delta \mid \Delta $	(a=0:aus, a=1:an)
?KAPOJ Automatic Shutoff	RW
!ΚΑΡΟΔΔ ΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΒyte→	(a=0:aus, a=1:10 min, a=2:30 min)
?KP20↓ Compensator	RW
!KP20ΔΔ ΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔ	(a=0:off, a=1:on)
?KSPR↓ Vertical Angle Display	RW
$KSPR\Delta\Delta   \Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta$ a $\Delta$ Bit $\Delta$ L	(a=0:Grad, a=1:%)
?KSVRJ Vertical Reference System	RW
$ KSVR\Delta\Delta \Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\DeltaZZZZ$	(ZZZZ=ZEN : zenith angle,
	ZZZZ=VERT: vertical angle,
	ZZZZ=HGHT: height angle)
<code>?KSKO+</code> Coordinate System and Display	Sequence RW
$ KSKO\Delta\Delta \Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Deltaab\Delta\Delta\Delta\Delta$	(a=1:xy, a=2:yx, a=3:ne
	b=1:RW-HW, b=2:HW-RW)
?KSMW→ Angle Resolution and Unit	RW
$ KSMW\Delta\Delta \Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta0.0005\Delta$ gon $\Delta$ ,	(0.0005/0.001/0.005 gon
	0.0001/0.0005/0.0010 DMS
	0.0005/0.001/0.005 deg 0.01/0.1/0.5 mil)
?KSMS→ Distance Resolution and Unit	RW
$ KSMS\Delta\Delta \Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta0.001\Delta m\Delta\Delta\Delta \downarrow$	(0.001/0.005/0.01 m
	0.001/0.01/0.02 ft)

 $\Delta$  – blank

## Data Management Remote Control

?KSMT→ Temperature Resolution and Unit	RW
$! KSMT\Delta\Delta   \Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta (\Delta C \Delta \Delta L) \qquad (1 C/1 F)$	
?KSMDJ Pressure Resolution and Unit	RW
$!KSMD\Delta\Delta \Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta$	Forr/0.1 inHg)
?KSZ $\Delta$ J Compensator Run Center in Sighting Dire	ction RW
!KSZΔΔΔ ΔΔΔΔΔΔΔΔΔΔΔ.00000ΔgonΔμ	
?KBz $\Delta\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ Compensator Reading in Sighting Direction	on RO
!KBzΔΔΔ ΔΔΔΔΔΔΔΔΔΔ.00000ΔgonΔμ	
?Ki $\Delta\Delta \rightarrow$ Index Correction	RW
$ Ki\Delta\Delta\Delta\Delta \Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta$ .00000 $\Delta$ gon $\Delta$	
?Kc $\Delta\Delta \rightarrow$ Collimation Correction	RW
!ΚcΔΔΔΔ ΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔ	
?KHVA+ Hz Rotational Angle	RW
$KHV\Delta\Delta\Delta   \Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta$ .00000 $\Delta$ gon $\Delta$	
?KA $\Delta\Delta$ Addition Constant	RW
$ KAAAAA AAAAAAAAAAAA 0.00AmAAA_J$	
$Km\Delta\Delta J$ Scale	RW
$  \operatorname{Km}\Delta\Delta\Delta\Delta   \Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta1.00000\Delta\Delta\Delta\Delta\Delta + $	
?KPΔΔ→ Air Pressure	RW
$ KP\Delta\Delta\Delta\Delta \Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\DeltaAAAAAAAAAAAAAAAAAAAAAA$	
?KT_∆↓ Temperature	RW
KTAAAA   AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
?Kih∆→ Instrument Height	RW
$! \texttt{Kih}\Delta\Delta\Delta \mid \Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta$ . 0000 $\Delta\texttt{m}\Delta\Delta\Delta$	
?Kth∆→ Reflector Height	RW
$! \texttt{Kth} \Delta 0 . 0000 \Delta \texttt{m} \Delta \Delta \textbf{A}$	
<code>?KYAS</code> Y Coordinate of the Station	RW
$ KY\Delta S\Delta\Delta \Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta$ 0.0000 $\Delta$ m $\Delta\Delta\Delta$ $\downarrow$	

 $\Delta$  - blank

#### Data Management Remote Control

?KX $\Delta$ SJ X Coordinate of the Station !KX $\Delta$ S $\Delta\Delta   \Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta$ 0.0000 $\Delta$ m $\Delta\Delta\Delta$ J	RW
?KN-SJ N Coordinate of the Station !KN-S $\Delta\Delta$   $\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta$ .0000 $\Delta$ m $\Delta\Delta\Delta$ J	RW
?KE_S $\rightarrow$ E Coordinate of the Station !KE_S $\Delta\Delta   \Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta$ 0.0000 $\Delta$ m $\Delta\Delta\Delta$ $\rightarrow$	RW
?KZ $\Delta$ S+J Station Height !KZ $\Delta$ S $\Delta\Delta   \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta 0.0000 \Delta m \Delta \Delta \Delta$ +J	RW
<code>?KLN1</code> Request for Language <code>!KLN1$\Delta\Delta$ $\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta$</code>	R0

The following parameter Hz0 takes up a special position:

?KHz0,Jthe displayed Hz direction is<br/>output in the selected format!KHzΔΔΔ|ΔΔΔΔΔΔΔΔΔΔΔ.00000ΔgonΔ,Jsets the Hz direction to<br/>the preset value (here 0.00000<br/>grad)

#### Designations:

RO	parameter	can	onl	Ly :	be	read	1
RW	parameter	can	be	re	ad	and	set

All parameters are output in the selected units, resolutions etc. Parameters can be entered irrespective of the parameters currently set. If call or setting commands include errors of syntax or content, the Elta R answers with 'E,J'.

 $\Delta$  – blank

Recording c See Data Forr	lata nats	lines					
Mode	Rec.	Mode	Content of Record				Comments
		7	P,C,I	H H	17 17	T3	
singre meas.	× ×			ЦЦ	ЧИ	х > 7.7	hzv mode,k=1,2,3,4 dep. on v syst. horizontal distance mode
	×		ССССС РРРРРРРРРР	SD	Hz	۷k	slope distance mode
	×		ССССС РРРРРРРРРР	Х	×	h/Z	coordinates mode, sequence y,x
	×		ССССС РРРРРРРРРР	×	Y	h/Z	coordinates mode, sequence x,y
	×		ССССС РРРРРРРРРР	ц	U	h/Z	coordinates mode, sequence n,e
	×		ССССС РРРРРРРРРР	Ð	q	h/Z	coordinates mode, sequence e,n
Adjustment c/i	×	×	ADJUST	Vk	Vk	н	k=1,2,3,4 depending on V system
	×	×	ADJUST	Нz	Hz	U	
	×	×	ADJUST			SZ	
Adjust. comp.	×	×	ADJUST			SZ	
Input values	×	×	INPUT	th	цi		
	×	×	INPUT	ا H	д	Ą	
	×	×	INPUT	Ħ			
	×	×	S ppppppppp			N	Zstation height
Compensator	×	×	COM-ON				compensator activated
	×	×	COM-OFF				compensator deactivated
Rec. mode:							
1: MEM/1, 2: MEM/2.	V24/1 V24/2						
3: 1+2							

Mode	Rec.	mode	Content of Record				Comments
	Ч	7	P,C,I	$^{\mathrm{T1}}$	T2	Т3	
Point to line	×	×	STA+OFF				point to line
(Station +	×		А РРРРРРРРРР		SD	Hz	Vk
Offset)	×		В РРРРРРРРРР	SD	HΖ	Vk	reference point B
	×		A=S				if station is defined as A
	×		B=S				if station is defined as P
		×	A-B	SD	Œ	Ч	base length
	×		ССССС РРРРРРРРР	SD	Hz	Vk	meas. pt. P
		×	ССССС РРРРРРРРРР	×	×	h/Z/0	Omeas.pt. Piy,x,e,n dep.on coor.sys.
	×		P=S				if station is defined as P
		×		х	×	h/Z/0	0
Connect.distance	×		CON.DST				
	×		А РРРРРРРРРР	SD	Hz	٧k	reference point A
	×		ССССС РРРРРРРРРР	SD	Hz	Vk	meas. pt. P
		×	A-P	SD	Ð	h/z	connecting distance A-P
	×		- Д	SD	Ð	h/z	connecting distance P-P
	×		A=S				if station is defined as A
			P=S				if station is defined as P
object height	×	×	OBJ. HT				
	×		А РРРРРРРРРРР	SD	Hz	Vk	reference point A
	×		ССССС РРРРРРРРРР		Hz	٧k	meas. pt. P, k=14 dep. on V syst.
		×	ССССС РРРРРРРРРР	HD	0	N	meas. pt. P
	×		ададададада і			Ŋ	Set Z value
	×		ddddddddd		Hz	Vk	k=1,2,3,4 depending on V system

Mode	Rec.	mode	Content of Recc	prd				Comments
	Ч	2	P,C,I	Г	던	$T_2$	Т3	
Vertical plane	×	×	VERT.PL					
	×		А РРРРРРРЕ	PP S	Q	Hz	Vk	reference point A
	×		В РРРРРРРЕ	PP S	Ð	Hz	٧k	reference point B
		×	A-B	S	Ð	日	Ч	base length
	×		CCCCC PPPPPPF	PPP		Hz	Vk	meas. pt. P, k=14 dep. on V sys.
		×	CCCCC PPPPPPF	PPP Y		×	Ч	meas. pt. P, Y,x,e,n dep. on
coord.sys.								
	×		P=S					if station is defined as P
	×	×	і РРРРРРРЕ	ррр			×	set value for $(y, n)$
	×		JAAAAAAA	ррр		Hz	٧k	Y, x or n dep. on coord.sys.
	×	×	i PPPPPPF	ррр			Ч	Set value for h
	×		JAAAAAAA	ррр		Hz	٧k	
		×		Я	۰.	X	Ч	
Area Calculation	×	×	AREA					
	×		CCCCC PPPPPPF	PPP S	Ð	Hz	Vk	meas. pt. P
		×	CCCCC PPPPPPF	PPP Y	<b>.</b> .	×	N	meas. pt. P
		×	CCCCC PPPPPPF	PPP Y	<b>.</b> .	×	N	Stored P
	×	×	AREA	ц	Ч			

Mode	Rec.	mode	Conte	mt of Record				Comments
	Ч	7	P,C,I		11 1	$^{\mathrm{T2}}$	$T_3$	
Unknown station	×	×	UN ST	AT				
		×	Ą	дддддддддд	X	×		reference point A, B, C, D, E
	×		Ą	дддддддддд	SD	Hz	Vk	measurement to A, B, C, D, E
		×	Ą	дддддддддд	γy	ΧΛ	$\nabla z$	residuals point A, B, C, D, E
	×	×	Ŋ	дддддддддд	Х	X		station coordinates
	×	×			Ħ	шÖ	SO	scale, orient., standard deviation
Known station	×	×	KN ST	ЪТ				
		×	Ŋ	дддддддддд	Х	×		station coordinates
		×	A	дддддддддд	X	×		reference point A
	×		Å	дддддддддд		Hz	٧k	measurement to A (Hz,V mode)
	×		Ą	дддддддддд	SD	Hz	Vk	measurement to A (SD,Hz,V mode)
	×	×				шO		orientation (Hz,V)
	×	×			Ħ	шÖ		scale, orientation (SD,Hz,V)
Height stationing	×	×	EL-ST	ЪТ				
	×	×		дддддддддд			N	Height of A
	×		Ą	дддддддддд	SD	Hz	٧k	Measurement to A
		×	ß	dddddddddd			N	computed station height
Polar points	×	×	POLAR					
	×		CCCCC	JADPPPPPPPP	SD	Hz	٧k	original readings
		×	CCCCC	JAPPPPPPPPP	Х	X	Ы	coordinates
	×	×	CCCCC	dddddddddd	Ð			Eccentricity Tv,Th,Tl,Tr,Ts

Mode	Rec.	mode	Conte	nt of Record				Comments
	1	7	P,C,I		11	$T_2$	Т3	
Stake out	×	×	S-0					
		×		дддддддддд	х	×	N	depending on stake-out-method
		×		дддддддддд	Х	X		depending on stake-out-method
		×		дддддддддд	ΟH	Hz	N	depending on stake-out-method
		×		дддддддддд	Œ	Hz		depending on stake-out-method
	×			дддддддддд	SD	Hz	Vk	reading for backsight point
		×		дддддддддд	dγ	dх	Dz	stake-out diff. dep. on meas. method
		×		дддддддддд	dу	dх		stake-out diff. dep. on meas. method
		×		дддддддддд	dl	dq	Dr	stake-out diff. dep. on meas. method
		×		дддддддддд			Dz	stake-out diff. dep. on meas. method
		×		дддддддддд	х	×	N	verification measurement
		×		дддддддддд	Х	X		verification measurement

An update is necessary if you load a new software version or if you want to change between the "Topo" and "Construction" models of the instrument.

Before starting the update, please save your data and use a fully charged accumulator battery.

The simplest way to get an update is via the Internet.

### Attention !

Different hardware versions require different update versions.

In any case, please pay attention to the correct update - the correct instrument name when selecting the update files.

Once unpacked the files, the instrument type can no longer be concluded from them.

## Data Management Update



The Update is car	rried out		
between	and		through
Trimble 3300		PC	cable



This cable is also used for data transfer. The adapter included in the delivery allows the connection to 9 and 25 channel sockets.

Copy the contents of the diskette into a directory of your choice or start the software from the diskette (default).

Switch the instrument on and select the item Update.

#### Preparation on the PC



#### Elta 40R

The question whether the Elta is in working order is to be answered in any case with **YES**.

📃 : to confirm



#### Data Management

Please follow now exactly the instructions given on the screen.

: to select the single steps

JPDE40RD:Elta	ADR Update-Programm (V 1.21) CO	M1 (C) CARL ZEISS Germany 1996
	Verbindungung Elta 40R => Co	mputer
Bedien	er Aktion	
1. Elt 2. Opt 3. Upd	a 40R Testmenü aufrufen ion "UPDATE" wählen ate am Elta 40R starten	
4. Wei	ter mit "ENTER"	
ESC - G	erätewahl	- (uittung

Trimble 3300 display:

Update		Re	all	ly st	art	
NEIN	to go to the menu		UP(	date	?	
JA	to start update	NEIN				JA

From now on, the PC software controls the instrument.



#### Update Elta 40R

Selection of the language desired (if available)

**Esc**: to end selection of language



#### Starting Update

Esc to start update

This operation takes some minutes comprising the transfer of one file with 30 and 4 files with 514 data records each.

UPDE4	ORD:Elta 40R Update-Programm (V 1.21) COM1 (C) CARL ZEISS Germany 19:	96
[	Update Elta 408	]
	Geräte-Hummer 108278 Zeichnungsnr 702719-0000.753 Firmwarestand nach 3.21	
	Quellen f:\update\elta_45\ Status Datei 3/5 Datensatz 149/514 Fehleranzeige	
	Aktion Update läuft	
	<pre><shift>F5 - Abbruch der laufenden Funktion</shift></pre>	

The end of the update is acknowledged by clear acoustic signals. The instrument is switched off by software. The update has now been completed.

# Update completed is flashing

: to go to the start-up menu

UPDE40RD:Elta 40R Update-Programm (V 1.21) COM1 (C) CARL ZEISS Germany 1996						
	Update Elta 40R					
	Geräte-Nummer 108278 Zeichnungsnr 702719-0000.753 Firmwarestand nach 3.21					
	Quellen f:\update\elta_45\ Status					
	Fehleranzeige Aktion					
L						
00000000000	- └↓	luittung				

#### 🖙 Tip

If no connection is achieved, in all probability the wrong interface has been selected or there is an error in the reference.

Please pay also attention to a perfect cable connection.

The instrument adjustment defines all corrections and correction values for the Trimble 3300 that are required to ensure optimum measuring accuracy.

Introduction	7-2
V Index / Hz Collimation	7-3
Compensator	7-6

#### Introduction

Increased strain placed on the instrument by extreme measuring conditions, transportation, prolonged storage and major changes in temperature may lead to misalignment of the instrument and faulty measuring results. Such errors can be eliminated by instrument adjustment or by specific measuring methods.

#### Display page 2:



CHCK

to go to menu "Checking"

# Presettings First steps

c/i

Comp

Additionally to activating and deactivating the compensator, this menu offers the following functions of checking and adjusting:

Determination of the vertical index correction (V index) and sighting axis correction (Hz collimation).

Determination of the compensator run centre.

#### Attention !

Before starting any adjustment, allow the instrument to adapt to the ambient temperature and make sure it is protected against heating up on one side (sun radiation).

### Adjusting



The vertical index and sighting axis corrections should be recomputed after prolonged storage or transportation of the instrument, after major temperature changes and prior to precise height measurements.

These determinations are especially important due to the fact that the measurement is carried out only in the 1st telescope position in order to save time.

#### 🕿 Tip

Before starting this procedure, precisely level the instrument using the level.

To determine the corrections, sight a clearly visible target in Hz and V from a distance of approx. 100 m. The sighting point should be close to the horizontal plane (in the range  $V = 100^{grads} \pm 10^{grads}$ ).



c=0 , i=0

Setting of values c = i = 0.

(MEAS) to trigger measurement in the 1st telescope position



The current **c** and **i** values are displayed in the readings window.

c sighting axis correction

i.

vertical index correction



### Adjusting

new

to confirm the new values / to record

old to confirm the old values



Display of results and recording

## Recording to Adr.: 33

#### Attention !

During the computation of the vertical index and sighting axis correction, the program also determines the compensator run centre.

If either the **c** or **i** value exceeds the admissible range of  $\pm$  50 mgrads, the error message appears. The values are not saved, and the menu for new calculation is displayed again.

#### Attention !

If the values remain outside the tolerance range, despite accurate sighting and repeated measurement, you should have the instrument checked by the service team.

## Adjusting

#### Compensator



(MEAS) to start measurement in the 2nd telescope position

- $\rightarrow$  to turn Hz = 0
- (MEAS) to trigger measurement in the 1st telescope position
- ESC to quit the adjusting menu

The Trimble 3300 features a compensator that <u>compensates</u> any vertical shaft inclinations remaining <u>after</u> instrument levelling in the sighting axis direction.

To check the compensator, its run centre should be determined at regular intervals and in particular prior to precise height measurements.



sz component in sighting axis direction



Display of results and recording:



#### Attention !

For the accurate determination of the run centre, it is essential that the liquid in the compensator is allowed to settle, i.e. any vibration of the compensator must be avoided. The annex contains a compilation of symbols, keys, formulae, constants and error messages as well as explanations of concepts used for the Trimble 3300 Routine Total Stations.

Furthermore, it gives an overview of the technical data and instructions for maintenance and care of the instrument.

Overview Softkeys	8-2
Overview Key Functions	8-6
Geodetic Glossary	8-7
Technical Data	8-13
Formulae and Constants	8-19
Error Messages	8-24
Maintenance and Care	8-26
Case /Extended Temperature Range	8-28

## Annex

# Overview Softkeys

HD		Setting the measuring mode: Measurement of reduced distances
xyh	yxh	Coordinate measurement, sequence X,Y, h Coordinate measurement, sequence Y,X
neh	enh	Coordinate measurement, sequence N,E Coordinate measurement, sequence E,N
SD	HzV	Measurement of slope distances Measurement of Hz direction and V angle
Hz=0		Setting the Hz direction to Hz=0
HOLD		Clamping the Hz direction for electronic circle orientation
END		Ending a function
th/ib		Input of reflector, instrument and station heights
th/in		Input of reflector height
ih/Zs		Input of instrument and station heights
<b>→</b> 1	<b>→</b> 2	Calling page 1 of the measurement menu Calling page 2 of the measurement menu
m	ft	Changing the distance unit: to meters/entry of scale to feet
gon deg	DMS mil	Changing the angle unit: to grads to DMS (degrees, minutes, seconds) to decimal degrees to mils
V %		Display of the height angle in %
VK		Display of the zenith angle (V=0 at the zenith)
V <b>7</b> I		Display of the vertical angle $(V=0 \text{ at the horizon, } 0 < V < 400 \text{ grads})$

Annex	Overview Softkeys
Vate	Display of the height angle (V=0 at the horizon, -100 < V < 100 grads)
→Hz ←Hz	Setting the Hz counting direction to clockwise Setting the Hz counting direction to anticlockwise
СНСК	Calling the checking and adjustment menu
ESC	Terminating a function, quitting a submenu
↑ ↓	Selecting the next upper line in the bar menu / in the internal memory Selecting the next lower line in the bar menu / in the internal memory
<b>←</b> →	Setting the cursor one character backward Setting the cursor one character forward
+ -	Incrementing a value Decrementing a value
MOD	Modification of the displayed value
o.k.	Confirmation of an entry
YES NO	Acceptance of an option Rejection of an option
c/i	Calling the function for the determination of the collimation and vertical index correction
Comp	Calling the function for the determination of the compensator run centre correction
C-on C-off	Deactivating the compensator Activating the compensator
old new	Retaining the old value Entering the new value
Rept	Repeating the process
i=0	Setting the vertical index correction to $i=0$
c=0	Setting the collimation correction to $c=0$

#### Annex

#### **Overview Softkeys**



Activating the reference point A, B, C

Activating the new point P

Using the station coordinates as reference point coordinates

Using the station coordinates as the coordinates of the new point

Using P as the new reference point A (connecting distance)

Input of a distance (in the Vertical Plane program)

Setting the reference height (in the Vertical Plane program)

Setting the reference height Z (in the Object Height program)

Setting the reference direction: (in the Vertical Plane program) (in the Vertical Plane program) (in the Vertical Plane program)

Referring the connecting distance to: the reference point A the last point used

Input of a value

Calling the scale entry (in the Coordinates programs)

Setting out according to nominal coordinates without height or entry in MEM

Setting out according to nominal coordinates with height or entry in MEM

## Annex

# Overview Softkeys

HD	HDh	Setting out using known setting out elements without with height
Z		Input of a height in the internal MEM memory
Z-j	Z-n	Changing to setting out: with height without height
Test		Calling the measurement of the setting out points
S-O		Calling the setting out of the next point
Stat		Starting stationing in elevation
S		Input of station coordinates for Unknown Station
Inp		Input of scale for planimetric stationing
Hz		Input of Hz for Known Station
Disp	Del Edt	Display of data lines of the memory Deletion of data lines of the memory Changing the point number and point code of a data line
?	?P ?C	Search for: data lines in the memory a point number in the memory a point code in the memory
?A		Search for an address in the memory
?↓		Continue search according to the same criterion
all		Selecting all data lines of the memory

Annex	Overview Key Functions
(MEAS)	First function Starting a measurement
ON	First function Switching the instrument on
ON OFF	Second function Switching the instrument off
	Second function Illumination ON/OFF
ON EDIT	Second function Calling the memory
ON PNO	Second function Calling the input of point number and code
ON MENU	Second function Going to the main menu
ON TRK	Second function Starting the tracking function

# Geodetic Glossary

	Α	
Addition constant	Addition value for distance measurement, default 0.	
Addition correction	Correction of the addition value ("addition constant") of the distance measuring instrument, e.g. if using prisms of other manufacturers.	
Alignment	Application program for the determination of any number of points on the straight line AB.	
	В	
Backsight point BP	A point with known coordinates used for the station point determination and/or for <i>orientation</i> .	
Bearing angle	Hz bearing orientated to a reference bearing (generally to grid north).	
Bearing (Hz)	Value read in the horizontal circle of the instrument, whose accidental orientation is determined by the zero position of the graduated circle.	
	C	
Calibration scale	Influences systematically the distance measurement. Best possible adjustment to 1.0 by the manufacturer. Without influence on all other scale specifications.	
Code, code number	Reference number for the point description, characterises certain point types.	
Compensation	Automatic mathematical consideration of the <i>vertical axis inclinations</i> measured with the <i>compensator</i> in the sighting direction, in V angle measurements.	
Compensator	Used to determine the current vertical axis inclination in the sighting axis direction, can be deactivated and activated again, as required; a graphical symbol in the information menu displays the activated compensator.	

# Geodetic Glossary

Compensator run centre	Electronic centre of the clinometer in sighting axis direction.	
Connecting distance	Spatial distance, plane distance and height difference between 2 target points.	
Control point	Point for checking the <i>orientation</i> of the instrument. It is defined at the beginning of a measurement and can be measured at any time for checking.	
Coordinates	Measuring program for the determination of points in a higher-order coordinate system.	
	D	
Default	Standard value for an instrument setting.	
Distance measuring mode	Depending on the purpose of application, the distance measurement is to be selected by pressing the MEAS key in the normal mode or the continuous distance measurement (tracking) is to be selected by pressing the ON + TRK keys simultaneously.	
	E	
Error limits	Limit values which can be set by the user for certain readings or results.	
	F	
	G	
	н	
Hardkeys	See key functions.	
Height stationing	The height of the station point is derived from measurements to known height points.	
Hz circle orientation	A predefined horizontal bearing value is allocated to the sighting direction to a measurement point.	
Hz collimation correction	(also called collimation or sighting axis correction) Correction of the deviation of the sighting axis from its required position right-angled to the	

Annex	Geodetic Glossary	
	trunnion axis. Determination by measurement in two positions, automatic correction in the case of measurements in one position. I	
Incrementing	(increment=interval) Automatic counting of the point number (increase by 1) after the measurement.	
Instrument height	Height of the telescope trunnion axis above the station height (ground point).	
Interface	Contact point between 2 systems or system areas, in which information is interchanged according to defined rules. K	
Key functions	First and second functions; for switching the instrument on, starting the measurement, switching off, illuminating the display, calling the memory, entering PI and going to the main menu, starting of tracking.	
	L	
Levelling	Vertical adjustment of the vertical axis of the instrument; the levels of the instrument are centred by turning the tribrach screws. The levelling can be checked by means of the digital display of inclinations after pressing the softkey <b>CHCK</b> .	
	М	
Measuring mode	In the measurement menu, the following measuring modes can be selected: HzV display in the theodolite mode display of reduced distance and height difference yxh local rectangular coordinates SD display of the original readings	

ſ	ר	
Ľ	,	

Object height Determination of the height of points to which a direct distance measurement is impossible, by means of an angle measurement. Orientation When orientating the instrument, the bearing angle of the zero of the graduated circle Omega (Om) is calculated. For this purpose, measurements to a backsight point can be made or the bearing angle of a known point can be entered. Orthogonal lines Application program to check lines for orthogonality, setting out right angles and especially for measurements in the case of visual obstacles. Ρ Parallel lines Application program to check the parallelism of straight lines or for setting out parallels with only one point given. Point identification Identification of the measured point by a maximum of 12 characters for the point number and up to 5 for the point code. Point number/Point code Part of the point identification. Point-to-line distance Application program for the determination of rectangular coordinates of any point in relation to a straight line defined by the points A and B. Polar point determination Determination of the coordinates and height of new points by distance and bearing measurement.

Q
# Geodetic Glossary

	R	
Recording mode	Selectable in the menu Interface/Recording:Offno recordingMEM/1Recording of measured data sets inMEM(not for Trimble 3306)MEM/2Recording of computed data sets inMEM(not for Trimble 3306)MEM/3Recording of all data sets in MEM (not for Trimble 3306)MEM/3MEMV24/1Recording of measured data sets through V24Recording of computed data sets through V24Network with the set of	
Reference point	Used here as reflector station for the indirect height determination.	
Reflector height	Height of the reflector (prism centre) above its station (ground point).	
Refraction coefficient	Measure for the light-beam refraction in the atmosphere; can be set by the user.	
Run centre	See Compensator run centre.	
	S	
Scale	With a <i>scale</i> , the measured distance is varied proportionally to the length and can thus be adapted to certain marginal conditions. There exist a series of direct and indirect scale effects: <i>calibration scale</i> , <i>projection reduction</i> , <i>height reduction</i> , <i>reticle scale</i> .	
Softkey	Function key which has several functions in dependence on the program.	
Standard measurement menu	The determination of points takes place within the local measuring system. The station of the instrument with the coordinates (0,0,0) represents the zero point of this system of coordinates. The <i>orientation</i> is determined by the zero direction of the Hz circle. The data are fitted in a given system	

Annex	Geodetic Glossary
	of coordinates (Trimble 3306) only during the further processing (possibly in the office) or a stationing is carried out in order to measure in a given system of coordinates.
Standard settings	Values set by the manufacturer for all configuration parameters.
Stationing	Precedes any determination of points in a defined system of coordinates. Consists in the station point determination and/or calculation of the orientation of the graduated circle: Stationing on a known or unknown point (free stationing), height stationing (height only).
Stationing on a known point	Given: Station point coordinates / backsight bearing. The <i>scale</i> and the <i>orientation</i> of the graduated circle are derived from the measurements to known <i>backsight points</i> .
	Т
Tracking	Continuous measurement of angles and distances. Hz and V values are constantly measured and displayed. Set permanent measurement for distance measurements.
	V
Vertical axis inclination	The inclinations of the vertical axis of the instrument in sighting axis direction are measured with the <i>compensator</i> , indicated digitally and can be requested on the display.
Vertical plane	Application program for the determination of points in a vertical plane by means of an angle measurement.
	W Z

	Trimble 3303	Trimble 3305 Trimble 3306	
Accuracy as per DIN 18	723		
Angle measurement Distance measurement	1.0 mgrad 3 mm+3	(3") 1.5 mgrads (5") ppm 5 mm + 3 ppm	
Telescope			
Magnification Aperture Length Field of view at 100 m Shortest sighting Special features		26 x 40 mm 193 mm 2.9 m 1.75 m variable reticle illumination, integrated sun shield	
Angle measurement			
Hz and V circles electronic absolute,			
Measuring units Vertical reference syster	360° ( ns ze	360° (DMS, DEG), 400 grads, 6400 mils zenith, height and vertical angle, slope in percent	
Least display unit (selectable)	0.0005°/0. 0.2 / 1 / 5 i	1´´/2´´/10´´ 002°0.005° 0.0005°/0.001°0.005° mgrads 0.5 / 1 / 5 mgrads 0.01'/0.1'/0.5'	
Distance measuremen	t		
Method Transmitter/Receiver op Measuring units	electro tics alt	o-optical, modulated infrared light coaxial, in telescope ternate display of results in m/ft	
Measuring time			
Standard Tracking		< 3.0 s 1.0 s	

Technical Data

Annex

AITIEX	Тестинса		
	Trimble 3303	Trimble 3305 Trimble 3306	
Measuring range			
with 1 prism with 3 prisms	1500 m 2000 m		1300 m 1600 m
Levelling			
Circular level Tubular level		10′/2 mm 30"/2 mm	
Compensator			
Type Working range Accuracy		uniaxial compensator 5′/100 mgrads 1,5"	
Clamps and tangent			
screws		coaxial, parallel axes	
Optical plummet			
Magnification Shortest sighting distance	ce	2 x 0.5 m	
Display screen			
	4 grap	lines with 21 characters e hic capabilities (128 x 32 display illumination	ach, pixels)
Keyboard			
		7 keys, display-orie	nted
Measuring menu			
	ŀ	Iz-V/SD-Hz-V/HD-Hz-h/y- setting, input, adjustmer	x-h 1t
Application programs (supported by graphics	š)		
	connecting vertic orthoao	distances, object height r cal plane, point-to-line dis nal lines, parallel lines, alio	neasurement, stance, gnment

Tack missel Date

٨

Annex	Technical Data
Trii	mble 3303 Trimble 3305 Trimble 3306
Coordinates programs (supported by graphics)	
	unknown station, known station, stationing in elevation, polar points, setting out
Recording	
	internal data memory - (approx. 1900 data lines)
	externally via RS 232 C/V24 interface switchover in the menu interface/recording, slip ring on stationary base
Power supply	
	NiMH battery pack 6 V/1.1 Ah; sufficient for approx. 1000 angle and distance measurements
Operating temperatures	
	-20°C to +50°C
Dimensions Instrument (WxHxD) Trunnion axis height with DIN centring spigot/ Wild centring	173 x 268 x 193 mm 175 mm 196 mm
Weights Instrument incl. battery and tribrach Case	3.5 kg 2.5 kg

### Electromagnetic Compatibility (EMV)

Die EU Conformity Declaration confirms the perfect function of the instrument in an electromagnetic environment.

### Attention !

Computers connected to the Trimble 3300 which are not part of the Trimble System delivery, have to meet the same EMV requirements in order to ensure that the overall configuration complies with the applicable interference suppression standards.

Interference suppression as per: EN 55011 class B

Noise immunity: EN 50082-2

#### 👁 Tip

Strong magnetic fields generated by mid and low voltage transformer stations possibly exceed the check criteria. Make a plausibility check of the results when measuring on such conditions.

Battery Charger LG 20		
Battery Management	Electrical and thermo-mechanical fuses protect instrument and battery during the operation and the battery during the charging process.	
	Change of battery after warning: connect a charged external battery and remove the empty internal battery from the instrument (or vice versa for empty external battery). Switch the instrument off for as long as the power supply is interrupted for the battery change.	
Technical Data	Universal charger for NiCd/NiMH cells of safety class II with nominal capacity: 0.5 Ah to 7 Ah. input: 230 V $\pm$ 10 % 50 Hz or DC 12 V output: 9.00 V; 800 mA or 2000 mA DC, resp.	
Safety Notes	Attention!	
	Please, read and observe these operating instructions before using the LG 20!	
	Protect the LG 20 against humidity, use it in dry rooms only.	
	Only the service or authorised specialists are allowed to open the LG 20.	
	Charge temperature range: 5° to 45°C; optimum: 10° to 30°C.	
	Charge parameters (nominal charging time, charging current) set automatically by a coding resistor (in battery pack) $\Rightarrow$ no overcharging, protection of instrument and battery.	
	For operating the LG 20/1 with a 12 V battery, the cable (70 84 10 - 000.000) with integrated fuse link delivered by the manufacturer is to be used unconditionally!	

# Charging the Battery

Connect the power source with the battery as demonstrated in the following picture. Note, that the voltage of the charging unit is identical with the power source.





LED permanently yellow Stand-by mode (no battery connected)

# Computational Formulae for Angle Measurements

V angle measurement	$V_k = V_0 + i + SZ_a$
	V _O = uncorrected V circle reading i = index correction
	$SZ_a = current vertical axis inclination in the sighting direction$
Hz bearing measurement	$Hz_{k} = Hz_{0} + Hz_{1} + A$
	Hz ₀ = uncorrected Hz circle reading
	$Hz_1 = c/sin(Vk)$ - collimation correction A = circle adjustment for orientation
Computational Formulae for	or Distance Measurements

Dk	$= D_0 \cdot M_i + A$
D _k	= corrected distance
$D_0$	= uncorrected distance
Α	= addition constant
$M_{i}$	= influence of meteorological data
Infl	ence of meteorological data:
Mi	$= (1 + (n_0 - n) 10^{\bullet}) \cdot (1 + (a \cdot T \cdot T) 10^{\bullet})$
n	= current refractive index
	= (79.146 · P) / (272.479 + T)
n ₀	= $(79.146 \cdot P) / (272.479 + T)$ = reference refractive index = 255
n _o P	= (79.146 · P) / (272.479 + T) = reference refractive index = 255 = air pressure in hPa or torr or in Hg
n _o P T	<ul> <li>= (79.146 • P) / (272.479 + T)</li> <li>= reference refractive index = 255</li> <li>= air pressure in hPa or torr or in Hg</li> <li>= temperature in degrees C or degrees F</li> </ul>
n _o P T a	<ul> <li>= (79.146 • P) / (272.479 + T)</li> <li>= reference refractive index = 255</li> <li>= air pressure in hPa or torr or in Hg</li> <li>= temperature in degrees C or degrees F</li> <li>= coefficient of vapour pressure correction</li> </ul>
n ₀ P T a	<ul> <li>= (79.146 • P) / (272.479 + T)</li> <li>= reference refractive index = 255</li> <li>= air pressure in hPa or torr or in Hg</li> <li>= temperature in degrees C or degrees F</li> <li>= coefficient of vapour pressure correction</li> <li>= 0.001</li> </ul>
n ₀ P T a	<ul> <li>= (79.146 • P) / (272.479 + T)</li> <li>= reference refractive index = 255</li> <li>= air pressure in hPa or torr or in Hg</li> <li>= temperature in degrees C or degrees F</li> <li>= coefficient of vapour pressure correction</li> <li>= 0.001</li> <li>er wavelength</li> <li>0.86 microns</li> </ul>
n ₀ P T a carri	$= (79.146 \cdot P) / (272.479 + T)$ $= reference refractive index = 255$ $= air pressure in hPa or torr or in Hg$ $= temperature in degrees C or degrees F$ $= coefficient of vapour pressure correction$ $= 0.001$ $r wavelength   0.86 microns$ ulation wavelength   20 m

Reduction Formulae		
Slope distance SD	Distance between the instrument 's trunnion axis and the prism. It is computed from the measured slope distance and the entered scale:	
	$SD = D_k \cdot M$	
	SD= displayed slope distance D _K = basic distance M = scale	
Horizontal distance HD	HD= (E1 + E2) · M HD= displayed horizontal distance	
	$E_{1} = D_{k} \cdot \sin (Z + R)$ $R = \text{influence of refraction}$ $= 6.5 \cdot 10^{-7} \cdot D_{k} \cdot \sin (Z)$ $E_{2} = \text{influence of earth curvature}$ $= -1.57 \cdot 10^{-7} \cdot dh \cdot D_{k} \cdot \sin (Z)$ $D_{k} = \text{corrected slope distance}$ $Z = \text{measured zenith angle [grads]}$ $M = \text{scale}$	
Difference in elevation h	$h = dh_1 + dh_2$ h = displayed difference in elevation $dh_1 = Dk \cdot \cos (Z)$	
	$dh_2 = (Dk \cdot sin(Z)) \cdot (Dk \cdot sin(Z)) 6.8 \cdot 10^{-8}$	
	= influence of earth curvature and refraction	

( k = 0.13 )

Distance reduction to MSL

Distances measured at elevation Z can be reduced to MSL by computing the following scale outside the instrument (computation formula applies to all earth radii):

 $\begin{array}{ll} \textbf{m} = \textbf{R}/\textbf{R} + \textbf{Z} \\ \textbf{S}_2 = \textbf{S}_1 \cdot \textbf{m} \\ \textbf{R} &= \text{earth radius (6370 Km)} \\ \textbf{Z} &= \text{elevation above MSL (Km)} \\ \textbf{S}_1 &= \text{measured distance at elevation Z} \\ \textbf{S}_2 &= \text{reduced distance at MSL} \end{array}$ 

If this scale is entered into the Elta[®] R, the computed distances are reduced directly in the instrument.

### Verifying on Calibration Distances

Basically, all measured distances are corrected with reference to: the entered scale, the entered addition constant, the influence of pressure and temperature, internal influencing variables.

### Attention!

Prior to the practical realisation of the calibration measurement, the current values of the parameters scale, addition constant, pressure and temperature are to be entered. The scale is to be set to default: 1.000000. This is to secure that all corrections are made completely and perfectly. Furthermore, this allows a direct comparison of nominal and actual values in the case of given distances.

If a weather correction is to be carried out externally, the temperature must be set to 20°C and the air pressure to 944 hPa. Then, the internal correction goes to zero.

### Prism and Addition Constants

All total stations Zeiss Elta series, in combination with their reflectors are adjusted with the **addition constant 0.000**.

In case of measurements to reflectors of other manufacturers, a possibly existing addition constant can be determined by measurement and entered.

Another possibility consists in calculating an addition constant by means of the known prism constant of the reflector used and entering it. This prism constant is calculated as function of the geometric value of the prism, the type of glass and the place of the mechanical reference point. The prism constant for Zeiss reflectors determined that way is -35 mm.

Relation between the addition constant Acz for Zeiss Elta instruments, the prism constant Pcz for Zeiss reflectors and the prism constant  $P_f$  for other manufacturers:

$$A_{CZ} = P_F - P_{CZ}$$

Example:

Zeiss reflector prism constant  $P_{CZ}$  = -35 mm

Foreign reflector prism constant  $P_{F}$  = -30 mm

Addition constant for Zeiss Elta instruments in connection with this

foreign reflector  $A_{CZ} = +5 \text{ mm}$ 

In this case, in the Trimble 3300 the addition constant + 0.005 m is set.

# Annex

# Error Messages

Error	Message	What to do
001 002 003 005	ROM error RAM error Data EEPROM was initialised Data EEPROM error	It is not advisable to continue the measurement as all basic settings of the instrument may have been changed.
40 - 59	Error in dist. measuring unit	If this error occurs repeatedly, please inform the service.
201	No Compensator	Time Out in contact with the Compensator Call the service
202	Compensator oper. range exceeded	Compensator range of 5' exceeded
203	No Compensator-Value	No measurement possible – instrument inclination to big
204	No Angle Sensor	Time Out in contact with the angle sensor Call the service
205	No Initialisation Angle Sensor	No Initialisation of the angle sensor Call the service
206	No Angle Value	No angle measurement possible, to fast movement in angle tracking The digits are replaced by dashes
207	Data-EEPROM	
208	Data-EEPROM Error in writing	Error in reading or writing EEPROM of the angle sensor or compensator
209	Data-EEPROM Error in reading	It is possible that there are changed important settings
210	Daten-EEPROM Error in reading	

211 212	Error Communication Error Communication	Error in communication with the angle sensor or compensator, call the service
410	MEM not initialised!	Initialisation can only be performed by service staff
411/ 412	Defect in system area	Work with the data memory is not possible, call the service
413 415 416	Defect in system area, reading is possible MEM reading error MEM writing error	In the event of error messages 413416, try to save the content of the data memory by transmission to the PC. If the error occurs again when recording is repeated, call the service.
417	MEM is full	Read out the memory content, delete the memory.
418 419	Pointcode or Point- number not found	Correct the entry.
581	Transmission error (in data transmission)	
584	Transmission time out (in XON/XOFF protocol)	If the general recording errors 518588 occur, first try to repeat recording.
586	Transmission time out (in XON/XOFF Rec 500 protocol)	at the other end.
587 588	I/O time out, Rec 500 protocol REC 500 protocol error	

## ☞Tip

If the warning "inadequate geometrical conditions" is ignored in the application programs, the last digit of the displayed values is replaced by 3 dots. If a recording error occurs, the last data line has usually not been transmitted.

### Before you call the service

Before you contact the service please notice the following service menu information. This information is very important to analyse the instrument errors.

# ON MENU

**Update/Service** 

YES Go to Menu



Service

	Err	Com	Res
A	080000	0800	0880
IC –	000000	0000	0080
E:	5C		

## Instructions for Maintenance and Care

Instrument	Allow sufficient time for the instrument to adjust to the ambient temperature.
	Use a soft cloth to remove dirt and dust from the instrument.
	When working in wet weather or rain, cover the instrument during longer breaks with the protective hood.
Object lens and eyepiece	Clean the optics with special care using a clean and soft cloth, cotton wool or a soft brush, do not use any liquid except pure alcohol.
	Do not touch the optical surface with the fingers.
Prisms	Steamed prisms must have sufficient time to adjust to the ambient temperature. Remove afterwards the moisture using a clean and soft cloth.
Transportation	For transportation over long distances, the instrument should be stored in its case.
	When working in wet weather, wipe the instrument and case dry in the field and let it dry completely indoors, with the case open.
	If, for the purpose of changing the station, the instrument with the tripod is transported on the shoulder, please make sure that instrument and person will not be damaged or injured.
Storage	Let wet instruments and accessories dry before packing them up.
	After a long storage, check the adjustment of the instrument prior to use.
	Observe the boundary values for the temperature of storing, especially in the summer (interior of the vehicle).

## Annex

# Keeping the Measurement System in the Case



# Using the Instrument in the Low Temperature Range to -35°C





ZSP Geodetic Systems GmbH Carl-Zeiss-Promenade 10 D-07745 Jena Germany

Phone: +49 3641 64-3200 Fax: + 49 3641 64-3229 email: surveying@zspjena.de www.trimble.com